ETC5510: Introduction to Data Analysis Week 4, part B

Advanced topics in data visualisation 381

Lecturer: Nicholas Tierney & Stuart Lee Department of Econometrics and Business Statistics ✓ ETC5510.Clayton-x@monash.edu April 2020

Parkville campus Faculty of Pharmacy and Pharmaceutical Sciences

> Monash Institute of Pharmaceutical Sciences

> > Pharmaceutical ociety of Australia Cossar Hall

While the song is playing...

Draw a mental model / concept map of last lectures content on joins.

recap

- Joins
- venn diagrams
- feedback

Joins with a person and a coat, by Leight Tami

Upcoming Due Dates

- Assignment 1: ...
- Other due dates?
- Stay tuned on ED for the upcoming dates

Making effective data plots

- 1. Principles / science of data visualisation
- 2. Features of graphics

Principles / science of data visualisation

- Palettes and colour blindness
- change blindness
- using proximity
- hierarchy of mappings

Features of graphics

- Layering statistical summaries
- Themes
- adding interactivity

Palettes and colour blindness

There are three main types of colour palette:

- Qualitative: categorical variables
- Sequential: low to high numeric values
- Diverging: negative to positive values

Qualitative: categorical variables

Sequential: low to high numeric values

Diverging: negative to positive values

Example: TB data

A tibble: 157,820 x 5

##		country	year	count	gender	age
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>
##	1	Afghanistan	1980	NA	т	04
##	2	Afghanistan	1981	NA	т	04
##	3	Afghanistan	1982	NA	т	04
##	4	Afghanistan	1983	NA	т	04
##	5	Afghanistan	1984	NA	т	04
##	6	Afghanistan	1985	NA	т	04
##	7	Afghanistan	1986	NA	т	04
##	8	Afghanistan	1987	NA	т	04
##	9	Afghanistan	1988	NA	т	04
##	10	Afghanistan	1989	NA	т	04
##	# .	with 157,87	10 more	e rows		

Example: TB data: adding relative change

A tibble: 219 x 4

##		country	`2002`	`2012`	reldif
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	Afghanistan	6509	13907	1.14
##	2	Albania	225	185	-0.178
##	3	Algeria	8246	7510	-0.0893
##	4	American Samoa	1	0	-1
##	5	Andorra	2	2	0
##	6	Angola	17988	22106	0.229
##	7	Anguilla	0	0	0
##	8	Antigua and Barbuda	4	1	-0.75
##	9	Argentina	5383	4787	-0.111
##	10	Armenia	511	316	-0.382
##	# .	with 209 more rows			

Example: Sequential colour with default palette

ggplot(tb_map) + geom_polygon(aes(x = long, y = lat, group = group, fill = reldif))
theme_map()

Example: (improved) sequential colour with default palette

library(viridis)
ggplot(tb_map) +
 geom_polygon(aes(x = long, y = lat, group = group, fill = reldif)) +
 theme_map() + scale_fill_viridis(na.value = "white")

Example: Diverging colour with better palette

ggplot(tb_map) +
 geom_polygon(aes(x = long, y = lat, group = group, fill = reldif)) +
 theme_map() +
 scale_fill_distiller(palette = "PRGn", na.value = "white", limits = c(-7, 7))

Summary on colour palettes

- Different ways to map colour to values:
 - Qualitative: categorical variables
 - Sequential: low to high numeric values
 - Diverging: negative to positive values

Colour blindness

- About 8% of men (about 1 in 12), and 0.5% women (about 1 in 200) population have difficulty distinguishing between red and green.
- Several colour blind tested palettes: RColorbrewer has an associated web site <u>colorbrewer.org</u> where the palettes are labelled. See also viridis, and scico.

Plot of two coloured points: Normal Mode

Plot of two coloured points: dicromat mode

Showing all types of colourblindness

Protanomaly

Tritanomaly

Desaturated

p2 <- p + scale_colour_brewer(palette = "Dark2") p2</pre>

Desaturated

p3 <- p + scale_colour_viridis_d() p3</pre>

Protanomaly

Tritanomaly

Desaturated

Summary colour blindness

- Apply colourblind-friendly colourscales
 - + scale_colour_viridis()
 - + scale_colour_brewer(palette = "Dark2")
 - scico R package

Pre-attentiveness: Find the odd one out?

Pre-attentiveness: Find the odd one out?

Using proximity in your plots

Basic rule: place the groups that you want to compare close to each other

Which plot answers which question?

- "Is the incidence similar for males and females in 2012 across age groups?"
- "Is the incidence similar for age groups in 2012, across gender?"

incidence similar for: (M and F) or (age, across gender) ?"

"Incidence similar for M & F in 2012 across age?"

- Males & females next to each other: relative heights of bars is seen quickly.
- Auestion answer: "No, the numbers were similar in youth, but males are more affected with increasing age."

"Incidence similar for age in 2012, across gender?"

- Puts the focus on age groups
- Answer to the question: "No, among females, the incidence is higher at early ages. For males, the incidence is much more uniform across age groups."

Proximity wrap up

- Facetting of plots, and proximity are related to change blindness, an area of study in cognitive psychology.
- There are a series of fabulous videos illustrating the effects of making a visual break, on how the mind processes it by Daniel Simons lab.
- Here's one example: <u>The door study</u>

Layering

- Statistical summaries: It is common to layer plots, particularly by adding statistical summaries, like a model fit, or means and standard deviations. The purpose is to show the trend in relation to the variation.
- *Maps:* Commonly maps provide the framework for data collected spatially. One layer for the map, and another for the data.

geom_point()

$ggplot(df, aes(x = x, y = y1)) + geom_point()$

geom_smooth(method = "lm", se = FALSE)

ggplot(df, aes(x = x, y = y1)) + geom_point() +
geom_smooth(method = "lm", se = FALSE)

geom_smooth(method = "lm")

ggplot(df, aes(x = x, y = y1)) + geom_point() +
geom_smooth(method = "lm")

geom_point()

$ggplot(df, aes(x = x, y = y2)) + geom_point()$

geom_smooth(method = "lm", se = FALSE)

ggplot(df, aes(x = x, y = y2)) + geom_point() +
geom_smooth(method = "lm", se = FALSE)

geom_smooth(se = FALSE)

ggplot(df, aes(x = x, y = y2)) + geom_point() +
geom_smooth(se = FALSE)

geom_smooth(se = FALSE, span = 0.05)

```
ggplot(df, aes(x = x, y = y2)) + geom_point() +
geom_smooth(se = FALSE, span = 0.05)
```


geom_smooth(se = FALSE, span = 0.2)

```
p1 <- ggplot(df, aes(x = x, y = y2)) + geom_point() +
  geom_smooth(se = FALSE, span = 0.2)
p1</pre>
```

Interactivity with magic plotly

library(plotly)
ggplotly(p1)

Themes: Add some style to your plot

Theme: theme_minimal

p +
 theme_minimal()

Theme: ggthemes theme_few()

р+

theme_few() +
scale_colour_few()

Theme: ggthemes theme_excel()

p +
 theme_excel() +
 scale_colour_excel()

Theme: for fun

library(wesanderson)

```
p +
  scale_colour_manual(
    values = wes_palette("Royal"
    )
```


Summary: themes

- The ggthemes package has many different styles for the plots.
- Other packages such as xkcd, skittles, wesanderson, beyonce, ochre,

Hierarchy of mappings

- 1. Position common scale (BEST): axis system
- 2. Position nonaligned scale: boxes in a side-by-side boxplot
- 3. Length, direction, angle: pie charts, regression lines, wind maps
- 4. Area: bubble charts
- 5. Volume, curvature: 3D plots
- 6. Shading, color (WORST): maps, points coloured by numeric variable
- <u>Di's crowd-sourcing expt</u>
- Nice explanation by <u>Peter Aldous</u>
- General plotting advice and a book from Naomi Robbins

Your Turn:

- lab quiz open (requires answering questions from Lab exercise)
- go to rstudio and check out exercise 4-B
- If you want to use R / Rstudio on your laptop:
 - Install R + Rstudio (see)
 - open R
 - type the following:

```
# install.packages("usethis")
library(usethis)
use_course("mida.numbat.space/exercises/4b/mida-exercise-4b.zip")
```

Resources

- Kieran Healy Data Visualization
- Winston Chang (2012) <u>Cookbook for R</u>
- Antony Unwin (2014) Graphical Data Analysis
- Naomi Robbins (2013) <u>Creating More Effective Charts</u>