ETC5510: Introduction to Data Analysis Week 3, part A

Data Visualisation

Lecturer: Nicholas Tierney & Stuart Lee Department of Econometrics and Business Statistics ✓ ETC5510.Clayton-x@monash.edu 23rd March 2020

Parkville campus

Monash Institute of Pharmaceutical Sciences

> Pharmaceutical ociety of Australia Cossar Hall

Understanding learning

- Growth and fixed mindsets
- Reframe success + failure as opportunities for growth
- Growing area of research by <u>Carol Dweck of Stanford</u>

Reframing

From

"I'll never understand" "I just don't get programming" "I'm not a maths person"

То

"I understand more than I did yesterday" "I can learn how to program" "Compared to this last week, I've learnt quite a bit!"

Overview for today

- Going from tidy data to a data plot, using a grammar
- Mapping of variables from the data to graphical elements
- Using different geoms

Example: Tuberculosis data

The case notifications table From <u>WHO</u>.

Data is tidied here, with only counts for Australia.

tb_au									
## # A tibble: 192 x 6									
##	country	iso3	year	count	gender	age			
##	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>			
##	1 Australia	AUS	1997	8	т	15-24			
##	2 Australia	AUS	1998	11	т	15-24			
##	3 Australia	AUS	1999	13	т	15-24			
##	4 Australia	AUS	2000	16	т	15-24			
##	5 Australia	AUS	2001	23	т	15-24			
##	6 Australia	AUS	2002	15	т	15-24			
##	7 Australia	AUS	2003	14	т	15-24			
##	8 Australia	AUS	2004	18	т	15-24			
##	9 Australia	AUS	2005	32	т	15-24			
## 1	0 Australia	AUS	2006	33	т	15-24			
## #	with 182	more	rows						

The "100% charts"

ggplot(tb_au, aes(x = year, y = count, fill = gender)) +
geom_bar(stat = "identity", position = "fill") +
facet_grid(~ age) +
scale_fill_brewer(palette="Dark2")

Let's unpack a bit.

Data Visualisation

"The simple graph has brought more information to the data analyst's mind than any other device." — John Tukey

Data Visualisation

- The creation and study of the visual representation of data.
- Many tools for visualizing data (R is one of them)
- Many approaches/systems within R for making data visualizations (**ggplot2** is one of them, and that's what we're going to use).

$ggplot2 \in tidyverse$

- **ggplot2** is tidyverse's data visualization package
- The gg in "ggplot2" stands for Grammar of Graphics
- It is inspired by the book Grammar of Graphics by Leland Wilkinson[†]
- A grammar of graphics is a tool that enables us to concisely describe the components of a graphic
- (Source: <u>BloggoType</u>)

library(ggplot2)
ggplot(tb_au)

Our first ggplot! (what's the data again?)

country	iso3	year	count gender	age
Australia	AUS	1997	8 m	15-24
Australia	AUS	1998	11 m	15-24
Australia	AUS	1999	13 m	15-24
Australia	AUS	2000	16 m	15-24
Australia	AUS	2001	23 m	15-24
Australia	AUS	2002	15 m	15-24
Australia	AUS	2003	14 m	15-24
Australia	AUS	2004	18 m	15-24
Australia	AUS	2005	32 m	15-24
Australia	AUS	2006	33 m	15-24

+

The "100% charts"

ggplot(tb_au, aes(x = year, y = count, fill = gender)) +
geom_bar(stat = "identity", position = "fill") +
facet_grid(~ age) +
scale_fill_brewer(palette="Dark2")

What do we learn

What do we learn?

- Focus is on **proportion** in each category.
- Across (almost) all ages, and years, the proportion of males having TB is higher than females
- These proportions tend to be higher in the older age groups, for all years.

Code structure of ggplot

- ggplot() is the main function
- Plots are constructed in layers
- Structure of code for plots can often be summarised as

How to use ggplot

• To use ggplot2 functions, first load tidyverse

library(tidyverse)

• For help with the ggplot2, see ggplot2.tidyverse.org

Let's look at some more options to emphasise different features

Emphasizing different features with ggplot2

Emphasise ... ?

What do we learn?

- , position = "fill" was removed
- Focus is on **counts** in each category.
- Different across ages, and years, counts tend to be lower in middle age (45-64)
- 1999 saw a bit of an outbreak, in most age groups, with numbers doubling or tripling other years.
- Incidence has been increasing among younger age groups in recent years.

Emphasise ... ?

What do we learn?

- , position="dodge" is used in geom_col
- Focus is on **counts by gender**, predominantly male incidence.
- Incidence among males relative to females is from middle age on.
- There is similar incidence between males and females in younger age groups.

Separate bar charts

What do we learn?

- facet_grid(gender ~ age) + faceted by gender as well as age
- note facet_grid vs facet_wrap
- Easier to focus separately on males and females.
- 1999 outbreak mostly affected males.
- Growing incidence in the 25-34 age group is still affecting females but seems to be have stablised for males.

Pie charts? Rose Charts

What do we learn?

- Bar charts in polar coordinates produce rose charts.
- coord_polar() + plot is made in polar coordinates, rather than the default Cartesian coordinates
- Emphasizes the middle years as low incidence.

Rainbow charts?

What do we see in the code??

- A single stacked bar, in each facet.
- Year is mapped to colour.
- Notice how the mappings are different. A single number is mapped to x, that makes a single stacked bar chart.
- year is now mapped to colour (that's what gives us the rainbow charts!)

What do we learn?

• Pretty chart but not easy to interpret.

(Actual) Pie charts

ggplot(tb_au, aes(x = 1, y = count, fill = factor(year))) +
geom_col(position = "fill") +
facet_grid(gender ~ age) +
coord_polar(theta = "y") +
theme(axis.text = element_blank())

What is different in the code?

 coord_polar(theta="y") is using the y variable to do the angles for the polar coordinates to give a pie chart.

What do we learn?

• Pretty chart but not easy to interpret, or make comparisons across age groups.

Why?

The various looks of David Bowie

- Using named plots, eg pie chart, bar chart, scatterplot, is like seeing animals in the zoo.
- The grammar of graphics allows you to define the mapping between variables in the data, with elements of the plot.
- It allows us to see and understand how plots are similar or different.
- And you can see how variations in the definition create variations in the plot.

Your Turn:

- Do the lab exercises
- Take the lab quiz
- Use the rest of the lab time to coordinate with your group on the first assignment.

References

- <u>Chapter 3 of R for Data Science</u>
- Data made available from WHO
- Garret Aden Buie's gentle introduction to ggplot2
- Mine Çetinkaya-Rundel's introduction to ggplot using star wars.