
ETC1010: Introduction to Data Analysis
Week of Tidy Data + Style

Stuart Lee & Nicholas Tierney
11th Mar 2020

1/82

How to learn
I want to some time to discuss ideas on learning, and how it ties
into the course.

2/82

3/82

4/82

5/82

6/82

7/82

8/82

9/82

10/82

11/82

12/82

13/82

14/82

(demo)

15/82

R + Rstudio
Functions are _
columns in data frames are
accessed with _ ?
packages are installed with _
?
packages are loaded with _ ?

Why do we care about
Reproducibility?
Output + input of rmarkdown
I have an assignment group
I have made contact with my
assignment group

recap

16/82

Style guide
"Good coding style is like correct punctuation:
you can manage without it,
butitsuremakesthingseasiertoread." -- Hadley
Wickham

Style guide for this course is based on the Tidyverse style guide:
http://style.tidyverse.org/
There's more to it than what we'll cover today, we'll mention
more as we introduce more functionality, and do a recap later in
the semester

17/82

http://style.tidyverse.org/

File names and code chunk labels
Do not use spaces in �le names, use - or _ to separate words
Use all lowercase letters

Good
ucb-admit.csv

Bad
UCB Admit.csv

18/82

Object names
Use _ to separate words in object names
Use informative but short object names
Do not reuse object names within an analysis

Good
acs_employed

Bad
acs.employed
acs2
acs_subset
acs_subsetted_for_males

19/82

Spacing
Put a space before and after all in�x operators (=, +, -, <-, etc.),
and when naming arguments in function calls.
Always put a space after a comma, and never before (just like in
regular English).

Good
average <- mean(feet / 12 + inches, na.rm = TRUE)

Bad
average<-mean(feet/12+inches,na.rm=TRUE)

20/82

ggplot
Always end a line with +
Always indent the next line

Good
ggplot(diamonds, mapping = aes(x = price)) +
 geom_histogram()

Bad
ggplot(diamonds,mapping=aes(x=price))+geom_histog

21/82

Long lines
Limit your code to 80 characters per line. This �ts comfortably
on a printed page with a reasonably sized font.
Take advantage of RStudio editor's auto formatting for
indentation at line breaks.

22/82

Assignment
Use <- not =

Good
x <- 2

Bad
x = 2

23/82

Quotes
Use ", not ', for quoting text. The only exception is when the text
already contains double quotes and no single quotes.

ggplot(diamonds, mapping = aes(x = price)) +
 geom_histogram() +
 # Good
 labs(title = "`Shine bright like a diamond`",
 # Good
 x = "Diamond prices",
 # Bad
 y = 'Frequency')

24/82

Source: Artwork by @allison_horst
25/82

filter()

select()

mutate()

arrange()

group_by()

summarise()

count()

Overview

26/82

Artwork by @allison_horst
27/82

R Packages

As of 2020-03-17 there are 15383 R packages available

avail_pkg <- available.packages(contriburl = cont
dim(avail_pkg)

[1] 15383 17

28/82

Name clashes
library(tidyverse)
── Attaching packages ──────────────
✓ ggplot2 3.3.0.9000 ✓ purrr 0.3.3
✓ tibble 2.1.3 ✓ dplyr 0.8.5
✓ tidyr 1.0.2 ✓ stringr 1.4.0
✓ readr 1.3.1 ✓ forcats 0.4.0
── Conflicts ────────────────────
x dplyr::filter() masks stats::filter()
x dplyr::group_rows() masks kableExtra::group_r
x dplyr::lag() masks stats::lag()

29/82

Many R packages
A blessing & a curse!
So many packages available, it can make it hard to choose!
Many of the packages are designed to solve a speci�c problem
The tidyverse is designed to work with many other packages
following a consistent philosophy
What this means is that you shouldn't notice it!

30/82

Let's talk about data

31/82

32/82

Example: french fries
Experiment in Food Sciences at Iowa State University.
Aim: �nd if cheaper oil could be used to make hot chips
Question: Can people distinguish between chips fried in the new
oils relative to those current market leader oil.
12 tasters recruited
Each sampled two chips from each batch
Over a period of ten weeks.

Same oil kept for a period of 10 weeks! May be a bit gross!

33/82

Example: french-fries - pivoting into long form
french_fries <- read_csv("data/french_fries.csv")
french_fries

A tibble: 6 x 9
time treatment subject rep potato buttery
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 3 1 2.9 0
2 1 1 3 2 14 0
3 1 1 10 1 11 6.4
4 1 1 10 2 9.9 5.9
5 1 1 15 1 1.2 0.1
6 1 1 15 2 8.8 3

34/82

Example: french-fries - pivoting into long form
fries_long <- french_fries %>%
 pivot_longer(cols = potato:painty,
 names_to = "type",
 values_to = "rating") %>%
 mutate(type = as.factor(type))
fries_long
A tibble: 3,480 x 6
time treatment subject rep type rating
<dbl> <dbl> <dbl> <dbl> <fct> <dbl>
1 1 1 3 1 potato 2.9
2 1 1 3 1 buttery 0
3 1 1 3 1 grassy 0

35/82

filter()
choose observations from your data

36/82

filter(): example
fries_long %>%
 filter(subject == 10)
A tibble: 300 x 6
time treatment subject rep type rating
<dbl> <dbl> <dbl> <dbl> <fct> <dbl>
1 1 1 10 1 potato 11
2 1 1 10 1 buttery 6.4
3 1 1 10 1 grassy 0
4 1 1 10 1 rancid 0
5 1 1 10 1 painty 0
6 1 1 10 2 potato 9.9
7 1 1 10 2 buttery 5.9 37/82

filter(): details
Filtering requires comparison to �nd the subset of observations
of interest. What do you think the following mean?

subject != 10

x > 10

x >= 10

class %in% c("A", "B")

!is.na(y)

03:00
38/82

filter(): details
subject != 10
Find rows corresponding to all subjects except subject 10

x > 10

�nd all rows where variable x has values bigger than 10

x >= 10

�nds all rows variable x is greater than or equal to 10.

class %in% c("A", "B")

�nds all rows where variable class is either A or B

!is.na(y)

�nds all rows that DO NOT have a missing value for variable y
39/82

Your turn: open french-fries.Rmd
Filter the french fries data to have:

only week 1
oil type 1 (oil type is called treatment)
oil types 1 and 3 but not 2
weeks 1-4 only

40/82

French Fries Filter: only week 1
fries_long %>% filter(time == 1)
A tibble: 360 x 6
time treatment subject rep type rating
<dbl> <dbl> <dbl> <dbl> <fct> <dbl>
1 1 1 3 1 potato 2.9
2 1 1 3 1 buttery 0
3 1 1 3 1 grassy 0
4 1 1 3 1 rancid 0
5 1 1 3 1 painty 5.5
6 1 1 3 2 potato 14
7 1 1 3 2 buttery 0
8 1 1 3 2 grassy 0

41/82

French Fries Filter: oil type 1
fries_long %>% filter(treatment == 1)
A tibble: 1,160 x 6
time treatment subject rep type rating
<dbl> <dbl> <dbl> <dbl> <fct> <dbl>
1 1 1 3 1 potato 2.9
2 1 1 3 1 buttery 0
3 1 1 3 1 grassy 0
4 1 1 3 1 rancid 0
5 1 1 3 1 painty 5.5
6 1 1 3 2 potato 14
7 1 1 3 2 buttery 0
8 1 1 3 2 grassy 0

42/82

French Fries Filter: oil types 1 and 3 but not 2
fries_long %>% filter(treatment != 2)
A tibble: 2,320 x 6
time treatment subject rep type rating
<dbl> <dbl> <dbl> <dbl> <fct> <dbl>
1 1 1 3 1 potato 2.9
2 1 1 3 1 buttery 0
3 1 1 3 1 grassy 0
4 1 1 3 1 rancid 0
5 1 1 3 1 painty 5.5
6 1 1 3 2 potato 14
7 1 1 3 2 buttery 0
8 1 1 3 2 grassy 0

43/82

French Fries Filter: weeks 1-4 only
fries_long %>% filter(time %in% c("1", "2", "3",
A tibble: 1,440 x 6
time treatment subject rep type rating
<dbl> <dbl> <dbl> <dbl> <fct> <dbl>
1 1 1 3 1 potato 2.9
2 1 1 3 1 buttery 0
3 1 1 3 1 grassy 0
4 1 1 3 1 rancid 0
5 1 1 3 1 painty 5.5
6 1 1 3 2 potato 14
7 1 1 3 2 buttery 0
8 1 1 3 2 grassy 0

44/82

about %in%
[demo]

45/82

select()
Chooses which variables to keep in the data set.
Useful when there are many variables but you only need some of
them for an analysis.

46/82

select(): a comma separated list of variables, by name.
french_fries %>%
 select(time,
 treatment,
 subject)
A tibble: 696 x 3
time treatment subject
<dbl> <dbl> <dbl>
1 1 1 3
2 1 1 3
3 1 1 10
4 1 1 10
5 1 1 15 47/82

select(): drop selected variables by pre�xing with -
french_fries %>%
 select(-time,
 -treatment,
 -subject)
A tibble: 696 x 6
rep potato buttery grassy rancid painty
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 2.9 0 0 0 5.5
2 2 14 0 0 1.1 0
3 1 11 6.4 0 0 0
4 2 9.9 5.9 2.9 2.2 0
5 1 1.2 0.1 0 1.1 5.1 48/82

select()
Inside select() you can use text-matching of the names like
starts_with(), ends_with(), contains(), matches(), or
everything()

french_fries %>%
 select(contains("e"))
A tibble: 696 x 5
time treatment subject rep buttery
<dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 3 1 0
2 1 1 3 2 0
3 1 1 10 1 6.4

49/82

select(): Using it
You can use the colon, :, to choose variables in order of the
columns

french_fries %>%
 select(time:subject)
A tibble: 696 x 3
time treatment subject
<dbl> <dbl> <dbl>
1 1 1 3
2 1 1 3
3 1 1 10
4 1 1 10
5 1 1 15 50/82

Your turn: back to the
french fries data

select() time, treatment and rep

select() subject through to rating
drop subject

03:00
51/82

Artwork by @allison_horst
52/82

mutate(): create a new variable; keep existing ones
french_fries
A tibble: 696 x 9
time treatment subject rep potato buttery
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 3 1 2.9 0
2 1 1 3 2 14 0
3 1 1 10 1 11 6.4
4 1 1 10 2 9.9 5.9
5 1 1 15 1 1.2 0.1
6 1 1 15 2 8.8 3
7 1 1 16 1 9 2.6
8 1 1 16 2 8.2 4.4 53/82

mutate(): create a new variable; keep existing ones
french_fries %>%
 mutate(rainty = rancid + painty)
A tibble: 696 x 10
time treatment subject rep potato buttery
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 3 1 2.9 0
2 1 1 3 2 14 0
3 1 1 10 1 11 6.4
4 1 1 10 2 9.9 5.9
5 1 1 15 1 1.2 0.1
6 1 1 15 2 8.8 3
7 1 1 16 1 9 2.6 54/82

Your turn: french fries
Compute a new variable called lrating by taking a log of the

rating

02:00
55/82

summarise(): boil data down to one row observation
fries_long

A tibble: 6 x 6
time treatment subject rep type rating
<dbl> <dbl> <dbl> <dbl> <fct> <dbl>
1 1 1 3 1 potato 2.9
2 1 1 3 1 buttery 0
3 1 1 3 1 grassy 0
4 1 1 3 1 rancid 0
5 1 1 3 1 painty 5.5
6 1 1 3 2 potato 14

56/82

summarise(): boil data down to one row observation
fries_long %>%
 summarise(rating = mean(rating, na.rm = TRUE))
A tibble: 1 x 1
rating
<dbl>
1 3.16

57/82

What if we want a
summary for each

type?
use group_by()

58/82

Using summarise() + group_by()
Produce summaries for every group:

fries_long %>%
 group_by(type) %>%
 summarise(rating = mean(rating, na.rm=TRUE))
A tibble: 5 x 2
type rating
<fct> <dbl>
1 buttery 1.82
2 grassy 0.664
3 painty 2.52
4 potato 6.95
5 rancid 3.85 59/82

Your turn: Back to
french-fries.Rmd

Compute the average rating by subject
Compute the average rancid rating per week

03:00
60/82

french fries answers
fries_long %>%
 group_by(subject) %>%
 summarise(rating = mean(rating, na.rm=TRUE))
A tibble: 12 x 2
subject rating
<dbl> <dbl>
1 3 2.46
2 10 4.24
3 15 2.16
4 16 3.00
5 19 4.54
6 31 4.00

61/82

french fries answers
fries_long %>%
 filter(type == "rancid") %>%
 group_by(time) %>%
 summarise(rating = mean(rating, na.rm=TRUE))
A tibble: 10 x 2
time rating
<dbl> <dbl>
1 1 2.36
2 2 2.85
3 3 3.72
4 4 3.60
5 5 3.53

62/82

arrange(): orders data by a given variable.
Useful for display of results (but there are other uses!)

fries_long %>%
 group_by(type) %>%
 summarise(rating = mean(rating, na.rm=TRUE))
A tibble: 5 x 2
type rating
<fct> <dbl>
1 buttery 1.82
2 grassy 0.664
3 painty 2.52
4 potato 6.95
5 rancid 3.85 63/82

arrange()
fries_long %>%
 group_by(type) %>%
 summarise(rating = mean(rating, na.rm=TRUE)) %>
 arrange(rating)
A tibble: 5 x 2
type rating
<fct> <dbl>
1 grassy 0.664
2 buttery 1.82
3 painty 2.52
4 rancid 3.85
5 potato 6.95 64/82

Your turn: french-
fries.Rmd - arrange
Arrange the average rating by type in decreasing order

Arrange the average subject rating in order lowest to highest.

02:00
65/82

arrange() answers
fries_long %>%
 group_by(type) %>%
 summarise(rating = mean(rating, na.rm=TRUE)) %>
 arrange(desc(rating))
A tibble: 5 x 2
type rating
<fct> <dbl>
1 potato 6.95
2 rancid 3.85
3 painty 2.52
4 buttery 1.82
5 grassy 0.664 66/82

arrange() answers
fries_long %>%
 group_by(subject) %>%
 summarise(rating = mean(rating, na.rm=TRUE)) %>
 arrange(rating)
A tibble: 12 x 2
subject rating
<dbl> <dbl>
1 78 1.94
2 79 1.94
3 15 2.16
4 3 2.46
5 52 2.72 67/82

count() the number of things in a given column
fries_long %>%
 count(type, sort = TRUE)
A tibble: 5 x 2
type n
<fct> <int>
1 buttery 696
2 grassy 696
3 painty 696
4 potato 696
5 rancid 696

68/82

Your turn: count()
count the number of subjects
count the number of types

02:00
69/82

French Fries: Putting it
together to problem

solve

70/82

The scales of the ratings are
quite different. Mostly the
chips are rated highly on
potato'y, but low on grassy.

French Fries: Are ratings similar?
fries_long %>%
 group_by(type) %>%
 summarise(
 m = mean(rating,
 na.rm = TR
 sd = sd(rating,
 na.rm = TRU
 arrange(-m)
A tibble: 5 x 3
type m s
<fct> <dbl> <dbl
1 potato 6.95 3.5

71/82

French Fries: Are ratings similar?
ggplot(fries_long,
 aes(x = type,
 y = rating)) +
 geom_boxplot()

72/82

French Fries: Are reps like each other?
fries_spread <- fries_long %>%
 pivot_wider(names_from = rep,
 values_from = rating)

fries_spread
A tibble: 1,740 x 6
time treatment subject type `1` `2`
<dbl> <dbl> <dbl> <fct> <dbl> <dbl>
1 1 1 3 potato 2.9 14
2 1 1 3 buttery 0 0
3 1 1 3 grassy 0 0
4 1 1 3 rancid 0 1.1

73/82

French Fries: Are reps like each other?
summarise(fries_spread,
 r = cor(`1`, `2`, use = "complete.obs")
A tibble: 1 x 1
r
<dbl>
1 0.668

74/82

French Fries:
 ggplot(fries_spread,
 aes(x = `1`,
 y = `2`)) +
 geom_point() +
 labs(title = "Data is poor quality: the replica

75/82

French Fries:

76/82

French Fries: Replicates by rating type
fries_spread %>%
 group_by(type) %>%
 summarise(r = cor(x = `1`,
 y = `2`,
 use = "complete.obs"))
A tibble: 5 x 2
type r
<fct> <dbl>
1 buttery 0.650
2 grassy 0.239
3 painty 0.479
4 potato 0.616

77/82

French Fries: Replicates by rating type
ggplot(fries_spread, aes(x=`1`, y=`2`)) +
 geom_point() + facet_wrap(~type, ncol = 5)

78/82

79/82

Lab exercise: Exploring data PISA data
Open pisa.Rmd on rstudio cloud.

80/82

Lab Quiz
Time to take the lab quiz.

81/82

Source: A drawing made by Alison Horst @allison_horstLearning is where you:
1. Receive information accurately

82/82

https://twitter.com/allison_horst?lang=en

