ETC1010: Introduction to Data Analysis

Week of Tidy Data + Style
Stuart Lee & Nicholas Tierney
11th Mar 2020

1/82

How to learn

| want to some time to discuss ideas on learning, and how it ties
into the course.

2/82

Competent
Beginner Practitioner Expert

)

> o =

I\

" don't know what "lcandoit, butl may "l can handle anything
| don't know." look things up." you throw at me"

CC BY-SA RStudio

Competent
Beginner Practitioner Expert

I\

" don't know what "lcandoit, butl may "l can handle anything
| don't know." look things up." you throw at me"

Competent
Beginner Practitioner Expert

" don't know what "lcandoit, butl may "l can handle anything
| don't know." look things up." you throw at me"

CC BY-SA RStudio

Competent
Beginner Practitioner Expert

)

> o =

I\

" don't know what "lcandoit, butl may "l can handle anything
| don't know." look things up." you throw at me"

CC BY-SA RStudio

Beginner

I\

No
mental model

CC BY-SA RStudio

Competent
Practitioner

Useful
mental model

EXpert

ﬁ

> o =

Elaborate
mental models

Mental
Models

a structure that organizes

Catch
with a net facts according to their
Poi 2 : -
olsonous % relationships

Black = not

poisonous

Green =
poisonous

No legs

Catch
with a net

Poisonous?!

Black = not

poisonous

Green =
poisonous

Poisonous?!

Green =
poisonous

| better be
careful...

No legs

Catch
with a net

Black = not

poisonous

Poisonous?!

Green =
poisonous

| better be
careful,

No legs

Catch
with a net

Black = not

poisonous

No legs

Catch
with a net

Poisonous?!

Black = not

poisonous

Green =
poisonous

B
eeizas Bnavledy

~
fpa

» (vtalke CW
{ bt

-

Y WUSR

T“Itﬂ ot lond

i |- Eunrndive
| %:ﬁl&—m 2 lwekeinaie b expead e / \ - \

]

i Wb bm

a structure that organizes
facts according to their
relationships

oM, rfﬂ) s it O =
Muﬁd et blad (Pradvin! broddg 7 ;
ﬂ'i_(*ﬁw,__,] { Dreterin krbedp lz...:“.ﬁ_sfmﬁ)

(demo)

11111

recap

e R+ Rstudio Why do we care about

e columns in data frames are * Output + input of rmarkdown
accessed with _ ? e | have an assignment group

e packages are installed with _ e | have made contact with my
? assignment group

e packages are loaded with _ ?

16/82

Style quide

"Good coding style is like correct punctuation:
you can manage without it,

butitsuremakesthingseasiertoread.” -- Hadley
Wickham

o Style guide for this course is based on the Tidyverse style guide:
http://style.tidyverse.org/

e There's more to it than what we'll cover today, we'll mention

more as we introduce more functionality, and do a recap later in
the semester

17/82

http://style.tidyverse.org/

File names and code chunk labels

e Do not use spaces in file names, use - or _ to separate words
e Use all lowercase letters

Good
ucb-admit.csv

Bad
UCB Admit.csv

18/82

e Use _ to separate words in object names

e Use informative but short object names
e Do not reuse object names within an analysis

Good
acs_employed

Bad

acs.employed

acs?2

acs_subset
acs_subsetted_for_males

19/82

e Put a space before and after all infix operators (=, +, -, <-, etc.),
and when naming arguments in function calls.

e Always put a space after a comma, and never before (just like in
regular English).

Good

average <- mean(feet / 12 + inches, na.rm = TRUE)

Bad

average<-mean(feet/12+inches, na.rm=TRUE)

20/82

ggplot

e Always end a line with +
e Always indent the next line

Good
ggplot(diamonds, mapping = aes(x = price)) +
geom_histogram()

Bad
ggplot(diamonds, mapping=aes(x=price))+geom_histog

21/82

e Limit your code to 80 characters per line. This fits comfortably
on a printed page with a reasonably sized font.

e Take advantage of RStudio editor's auto formatting for
indentation at line breaks.

22/82

e Use <-not =

Good
X <- 2

Bad
X = 2

23/82

Use ", not ', for quoting text. The only exception is when the text
already contains double quotes and no single quotes.

ggplot(diamonds, mapping = aes(x = price)) +
geom_histogram() +

Good
labs(title = "“Shine bright like a diamond™ ",
Good
X = "Diamond prices"’,
Bad
y = 'Frequency')

24/82

Source: Artwork by @allison_horst

e filter() group_by()
e select() e summarise()
e mutate() e count()

e arrange()

26/82

R Packages

avail_pkg <- available.packages(contriburl = con

dim(avail_pkg)
[1] 15383 17

As of 2020-03-17 there are 15383 R packages available

28/82

Name clashes

library(tidyverse)

—— Attaching packages

v ggplot2 3.3.0.9000 v purrr 0.3.3
v tibble 2.1.3 v dplyr 06.8.5
v tidyr 1.0.2 v stringr 1.4.0
v readr 1.3.1 v forcats 0.4.6
—— Conflicts

x dplyr::filter() masks stats::filter()

x dplyr::group_rows() masks kableExtra::group_r
x dplyr::lag() masks stats::lag()

29/82

Many R packages

e Ablessing & a cursel
e SO0 many packages available, it can make it hard to choose!
 Many of the packages are designed to solve a specific problem

e The tidyverse is designed to work with many other packages
following a consistent philosophy

e What this means is that you shouldn't notice it!

30/82

Let's talk about data

33333

Five scales

Three oils. For 10 weeks

two batches

12 subjects

2 1017 12 13
16 17 18 18 20

23 24 25 28 27

0 N

Example: french fries

e Experiment in Food Sciences at lowa State University.
e Aim: find if cheaper oil could be used to make hot chips

e Question: Can people distinguish between chips fried in the new
oils relative to those current market leader oil.

e 12 tasters recruited

e Each sampled two chips from each batch

e Over a period of ten weeks.

Same oil kept for a period of 10 weeks! May be a bit gross!

33/82

Example: french-fries - pivoting into long form

french_fries <- read_csv("data/french_fries.csv")
french_fries

i
Ha
i
##
##
##
##
7
7

A tibble:

AN O A W N =

6 x 9

time treatment

<dbl>

—_—))))) =)

<dbl>

_—))))) =)

subject

rep potato buttery

<dbl> <dbl>

3
3
16
16
15
15

1
2
1
2
1
2

<dbl>
2.9
14
11
9.9
1.2
8.8

<dbl>
7]
7]
6.4
5.9
0.1
3

34/82

Example: french-fries - pivoting into long form

fries_long <- french_fries %>%
pivot_longer(cols = potato:painty,
names_to = "type",
values_to = "rating") %>%
mutate(type = as.factor(type))
fries_long
A tibble: 3,480 x 6

7 time treatment subject rep type rating
<dbl> <dbl> <dbl> <dbl> <fct> <dbl>
1 1 1 3 1 potato 2.9
2 1 1 3 1 buttery 0

3 1 1 3 1 grassy 0 25 /80

filter()

choose observations from your data

36/82

filter(): example

fries_long %>%
filter(subject == 10)
A tibble: 360 x 6

#i time treatment subject rep type rating

<dbl> <dbl> <dbl> <dbl> <fct> <dbl>

1 1 1 16 1 potato 11

2 1 1 10 1 buttery 6.4

3 1 1 16 1 grassy 0

4 1 1 10 1 rancid 0

5 1 1 16 1 painty 0

6 1 1 16 2 potato 9.9

7 1 1 10 2 buttery 5.9 37/82

filter(): details

Filtering requires comparison to find the subset of observations
of interest. What do you think the following mean?

e subject !'= 10
e X > 10
e X >= 10

e class %in% c("A", "B")

lis.na(y)

03 :00

38/82

filter(): details

subject != 10
Find rows corresponding to all subjects except subject 10

X > 10
find all rows where variable x has values bigger than 10
X >= 10

finds all rows variable x is greater than or equal to 10.
class %in% c("A", "B")
finds all rows where variable class is either A or B

lis.na(y)

finds all rows that DO NOT have a missing value for variable y 20789

Your turn: open french-fries.Rmd

Filter the french fries data to have:

e only week 1

e oil type 1 (oil type is called treatment)
e oil types 1 and 3 but not 2

e weeks 1-4 only

40/82

French Fries Filter: only week 1

fries_long %>% filter(time == 1)

A tibble: 360 x 6

7 time treatment subject rep type rating
<dbl> <dbl> <dbl> <dbl> <fct> <dbl>
1 1 1 3 1 potato 2.9
2 1 1 3 1 buttery 0
3 1 1 3 1 grassy 0
4 1 1 3 1 rancid 0
5 1 1 3 1 painty 5.5
6 1 1 3 2 potato 14
7 1 1 3 2 buttery

8 1 1 3 2 grassy

41/82

French Fries Filter: oil type 1

fries_long %>% filter(treatment == 1)

A tibble: 1,160 x 6

7 time treatment subject rep type rating
<dbl> <dbl> <dbl> <dbl> <fct> <dbl>
1 1 1 3 1 potato 2.9
2 1 1 3 1 buttery 0
3 1 1 3 1 grassy 0
4 1 1 3 1 rancid 0
5 1 1 3 1 painty 5.5
6 1 1 3 2 potato 14
7 1 1 3 2 buttery

8 1 1 3 2 grassy

42/82

French Fries Filter: oil types 1 and 3 but not 2

fries_long %>% filter(treatment != 2)

A tibble: 2,320 x 6

7 time treatment subject rep type

<dbl> <dbl> <dbl> <dbl> <fct>
1 1 1 3 1 potato
2 1 1 3 1 buttery
3 1 1 3 1 grassy
4 1 1 3 1 rancid
5 1 1 3 1 painty
6 1 1 3 2 potato
7 1 1 3 2 buttery
8 1 1 3 2 grassy

rating
<dbl>
2.9

43/82

French Fries Filter: weeks 1-4 only

fries_long %>% filter(time %in% c("1", "2", "3",
A tibble: 1,440 x 6

7 time treatment subject rep type rating
<dbl> <dbl> <dbl> <dbl> <fct> <dbl>
1 1 1 3 1 potato 2.9
2 1 1 3 1 buttery 0
3 1 1 3 1 grassy 0
4 1 1 3 1 rancid 0
5 1 1 3 1 painty 5.5
6 1 1 3 2 potato 14
7 1 1 3 2 buttery

8 1 1 3 2 grassy

44/82

about %1n%

[demo]

45/82

e Chooses which variables to keep in the data set.

e Useful when there are many variables but you only need some of
them for an analysis.

46/82

select(): a comma separated list of variables, by name.

french_fries %>%

select(time,

treatment,

subject)
A tibble: 696 x 3
time treatment subject
<dbl> <dbl> <dbl>
1 1 1 3
2 3
3 1 1 10
4 1 1 10
5 1 1 15 47/82

select(): drop selected variables by prefixing with -

french_fries %>%
select(-time,

-treatment,
-subject)
A tibble: 696 x 6
rep potato buttery grassy rancid painty
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 2.9 0 0 0 5.5
2 2 14 0 0 1.1 0
3 1 11 6.4 0 0 0
4 2 9.9 5.9 2.9 2.2 0
5 1 1.2 0.1 0 1.1 5.1 48/82

Inside select () you can use text-matching of the names like
starts_with(), ends_with(), contains(),matches(), or
everything()

french_fries %>%
select(contains("e"))
A tibble: 696 x 5

i time treatment subject rep buttery
HH <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 3 1 0
2 1 1 3 2 0
3 1 1 10 1 6.4

49/82

select(): Using it

You can use the colon, :, to choose variables in order of the
columns

french_fries %>%
select(time:subject)
A tibble: 696 x 3

time treatment subject
<dbl> <dbl> <dbl>
1 1 1 3
2 3
3 1 1 16
4 1 1 10
5 1 1 15 50/82

Your turn: back to the
french fries data

select () time, treatment and rep

select() subject through to rating
drop subject

i@3 .00

51/82

Artwork by @allison_horst

mutate(): create a new variable; keep existing ones

french_fries
A tibble: 696 x 9

time treatment subject rep potato buttery

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1 1 3 1 2.9 0

2 1 1 3 2 14 0

3 1 1 10 1 11 6.4

4 1 1 10 2 9.9 5.9

5 1 1 15 1 1.2 0.1

6 1 1 15 2 8.8 3

7 1 1 16 1 9 2.6

8 1 1 16 2 8.2 4.4 53/82

mutate(): create a new variable; keep existing ones

french_fries %>%
mutate(rainty = rancid + painty)
A tibble: 696 x 10

time treatment subject rep potato buttery

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1 1 3 1 2.9 0

2 1 1 3 2 14 0

3 1 1 10 1 11 6.4

4 1 1 10 2 9.9 5.9

5 1 1 15 1 1.2 0.1

6 1 1 15 2 8.8 3

7 1 1 16 1 9 2.6 54/82

Your turn: french fries

Compute a new variable called 1rating by taking a log of the
rating

9200

55/82

summarise(): boil data down to one row observation

fries_long

A tibble: 6 x 6
7t time treatment subject rep type rating

<dbl> <dbl> <dbl> <dbl> <fct> <dbl>
1 1 1 3 1 potato 2.9
2 1 1 3 1 buttery 0
3 1 1 3 1 grassy 0
4 1 1 3 1 rancid 0
5 1 1 3 1 painty 5.5
6 1 1 3 2 potato 14

56/82

summarise(): boil data down to one row observation

fries_long %>%
summarise(rating

A tibble: 1 x 1

7 rating

#H <dbl>

1 3.16

mean(rating, na.rm = TRUE))

57/82

What if we want a
summary for each

type?

use group_by ()

58/82

Using summarise() + group_by()

Produce summaries for every group:

fries_long %>%
group_by(type) %>%
summarise(rating

A tibble: 5 x 2

7 type rating

<fct> <dbl>

1 buttery 1.82

2 grassy 0.664

3 painty 2.52

4 potato 6.95

5 rancid 3.85 59/82

mean(rating, na.rm=TRUE))

Your turn: Back to
french-fries.Rmd

Compute the average rating by subject
Compute the average rancid rating per week

i@3 .00

60/82

french fries answers

fries_long %>%
group_by(subject) %>%

Ha
A
##
##
##
##
##
7
##

summarise(rating
A tibble:

subject
<dbl>

3

10

15

16

19

31

AN O A QWO N =

12 x 2
rating
<dbl>
2.46
4.24
2.16
3.00
4.54
4.00

mean(rating, na.rm=TRUE))

61/82

french fries answers

fries_long %>%
filter(type == "rancid") %>%
group_by(time) %>%

summarise(rating

A tibble: 19 x 2

##
##
##
##
##
7
##

time rating

<dbl>
1 1
2 2
3 3
4 4
5 5

<dbl>
2.36
2.85
3.72
3.60
3.53

mean(rating, na.rm=TRUE))

62/82

arrange(): orders data by a given variable.

Useful for display of results (but there are other uses!)

fries_long %>%
group_by(type) %>%
summarise(rating
A tibble: 5 x 2
type rating
<fct> <dbl>
1 buttery 1.82
2 grassy 0.664
3 painty 2.52
4 potato 6.95
5 rancid 3.85

mean(rating, na.rm=TRUE))

63/82

fries_long %>%
group_by(type) %>%
summarise(rating
arrange(rating)

A tibble: 5 x 2

7 type rating

<fct> <dbl>

1 grassy 0.664

2 buttery 1.82

3 painty 2.52

4 rancid 3.85

& potato 6.95 64/82

mean(rating, na.rm=TRUE)) %>

Your turn: french-
fries.Rmd - arrange

Arrange the average rating by type in decreasing order
Arrange the average subject rating in order lowest to highest.

9200

65/82

arrange() answers

fries_long %>%

group_by(type) %>%

summarise(rating

A tibble:

7 type rating

<fct>
1 potato
2 rancid
3 palnty
4 buttery
5 grassy

<dbl>
6.95
3.85
2.52
1.82
0.664

mean(rating, na.rm=TRUE)) %>
arrange(desc(rating))
S5 X 2

66/82

arrange() answers

fries_long %>%
group_by(subject) %>%

A
##
##
##
##
7
7
##t

summarise(rating

arrange(rating)

A tibble:

subject
<dbl>
/8

79

15

3

52

A DN WO N —

12 x 2
rating
<dbl>
1.94
1.94
2.16
2.46
2.72

mean(rating, na.rm=TRUE)) %>

67/82

count () the number of things in a given column

fries_long %>%
count(type, sort
A tibble: 5 x 2
7 type n
<fct> <int>
1 buttery 696
2 grassy 696
3 palnty 696
4 potato 696
5 rancid 696

TRUE)

68/82

Your turn: count ()

e count the number of subjects
e count the number of types

02

: 00

69/82

French Fries: Putting it
together to problem
solve

77777

French Fries: Are ratings similar?

The scales of the ratings are
quite different. Mostly the
chips are rated highly on
summarise (potato'y, but low on grassy.

fries_long %>%
group_by(type) %>%

m = mean(rating,
na.rm = TFI
sd = sd(rating,

na.rm = TRL
arrange(-m)
A tibble: 5 x 3
type m S
<fct> <dbl> <dbl

1 potato 6.95 3.5 71/82

French Fries: Are ratings similar?

ggplot(fries_long,
aes(x = type,
y = rating)) +

geom_boxplot()

[

[]

[

1
grassy

painty
type

72/82

French Fries: Are reps like each other?

fries_spread <- fries_long %>%

fries_spread
A tibble:

##
##
##
##
7
7

AN W N —

time treatment subject

<dbl>

1

1
1
1

1,746 x 6

<dbl> <dbl>
1 3
1 3
1 3
1 3

pivot_wider (names_from = rep,
values_from = rating)

type
<fct>
potato
buttery
grassy
rancid

0
0
0

‘o

<dbl> <dbl>
2.

9 14
0
0
1.1

73/82

French Fries: Are reps like each other?

summarise(fries_spread,
r =cor(17,
A tibble: 1 x 1

r
<dbl>
1 0.668

U

)

use

"complete.obs")

74/82

ggplot(fries_spread,

aes(x = 17,
y = '27)) +
geom_point() +
labs(title = "Data is poor quality: the replica

75/82

Data is poor quality: the replicates do not look like each other!

15=

'
o
-

15

76/82

frie

group_by(type) %>%
mmarise(r = cor(x

Su

French Fries: Replicates by rating type

s_spread %>%

A tibble: 5 x 2

##
##
1
2
3
4

type r
<fct> <dbl>

buttery 6.650
grassy 6.239
painty 6.479
potato 0.6176

y
use

)

"complete.obs"))

77/82

French Fries: Replicates by rating type

ggplot(fries_spread, aes(x="1", y="2")) +
geom_point() + facet_wrap(~type, ncol = 5)

154 buttery grassy painty potato rancid
. o*
L o * e es ° °
:) WSS T 1
(]] e o o
1 ° e ° o:" .:} «° ..o 0......': o.
10 - L] ‘z .; ... ’ L *® ®» o @
| . °e ‘.o o “’ i Lt JE
1L AR Xl I A DA
N C | ® -~ ”‘. $ - o
g T Lee® ‘i.;' I $° e’
.. i [] & ' .J~..
IS “ss, gi. ARy
!0‘ o3 .. ".5:&.%" ° YA 2%
o [0™ ". a8 b Td ® o i 0o, ®
... ® ’.. ,. s:.‘ &‘
° ¥ P oo
LR T M
o ® .o ° o r [4 .dtob
0 5 10 15 (I) é 10 15 (') é 1|0 15 0 5 1|0 1I5 (I) é 1'0 15

78/82

79/82

Lab exercise: Exploring data PISA data

Open pisa.Rmd on rstudio cloud.

80/82

Lab Quiz

Time to take the lab quiz.

81/82

Learning is where you:

1. Receive information accurately

82/82

https://twitter.com/allison_horst?lang=en

