ETC1010: Introduction to Data Analysis

Week of Tidy Data + Style
Stuart Lee & Nicholas Tierney
11th Mar 2020
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How to learn

| want to some time to discuss ideas on learning, and how it ties
into the course.
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recap

e R+ Rstudio  Why do we care about

e columns in data frames are * Output + input of rmarkdown
accessed with _ ? e | have an assignment group

e packages are installed with _ e | have made contact with my
? assignment group

e packages are loaded with _ ?
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Style quide

"Good coding style is like correct punctuation:
you can manage without it,

butitsuremakesthingseasiertoread.” -- Hadley
Wickham

o Style guide for this course is based on the Tidyverse style guide:
http://style.tidyverse.org/

e There's more to it than what we'll cover today, we'll mention

more as we introduce more functionality, and do a recap later in
the semester
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http://style.tidyverse.org/

File names and code chunk labels

e Do not use spaces in file names, use - or _ to separate words
e Use all lowercase letters

# Good
ucb-admit.csv

# Bad
UCB Admit.csv
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e Use _ to separate words in object names

e Use informative but short object names
e Do not reuse object names within an analysis

# Good
acs_employed

# Bad

acs.employed

acs?2

acs_subset
acs_subsetted_for_males
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e Put a space before and after all infix operators (=, +, -, <-, etc.),
and when naming arguments in function calls.

e Always put a space after a comma, and never before (just like in
regular English).

# Good

average <- mean(feet / 12 + inches, na.rm = TRUE)

# Bad

average<-mean(feet/12+inches, na.rm=TRUE)
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ggplot

e Always end a line with +
e Always indent the next line

# Good
ggplot(diamonds, mapping = aes(x = price)) +
geom_histogram()

# Bad
ggplot(diamonds, mapping=aes(x=price) )+geom_histog
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e Limit your code to 80 characters per line. This fits comfortably
on a printed page with a reasonably sized font.

e Take advantage of RStudio editor's auto formatting for
indentation at line breaks.
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e Use <-not =

# Good
X <- 2

# Bad
X = 2
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Use ", not ', for quoting text. The only exception is when the text
already contains double quotes and no single quotes.

ggplot(diamonds, mapping = aes(x = price)) +
geom_histogram() +

# Good
labs(title = "“Shine bright like a diamond™ ",
# Good
X = "Diamond prices"’,
# Bad
y = 'Frequency')
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Source: Artwork by @allison_horst



e filter()  group_by()
e select() e summarise()
e mutate() e count()

e arrange()
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R Packages

avail_pkg <- available.packages(contriburl = con

dim(avail_pkg)
## [1] 15383 17

As of 2020-03-17 there are 15383 R packages available
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Name clashes

library(tidyverse)

## —— Attaching packages

## v ggplot2 3.3.0.9000 v purrr 0.3.3
## v  tibble 2.1.3 v dplyr 06.8.5
## v tidyr 1.0.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.4.6
## —— Conflicts

## x dplyr::filter() masks stats::filter()

## x dplyr::group_rows() masks kableExtra::group_r
## x dplyr::lag() masks stats::lag()
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Many R packages

e Ablessing & a cursel
e SO0 many packages available, it can make it hard to choose!
 Many of the packages are designed to solve a specific problem

e The tidyverse is designed to work with many other packages
following a consistent philosophy

e What this means is that you shouldn't notice it!
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Let's talk about data

33333




Five scales

Three oils. For 10 weeks

two batches

12 subjects

2 1017 12 13
16 17 18 18 20
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Example: french fries

e Experiment in Food Sciences at lowa State University.
e Aim: find if cheaper oil could be used to make hot chips

e Question: Can people distinguish between chips fried in the new
oils relative to those current market leader oil.

e 12 tasters recruited

e Each sampled two chips from each batch

e Over a period of ten weeks.

Same oil kept for a period of 10 weeks! May be a bit gross!
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Example: french-fries - pivoting into long form

french_fries <- read_csv("data/french_fries.csv")
french_fries

i
Ha
i
##
##
##
##
7
7

# A tibble:

AN O A W N =

6 x 9

time treatment

<dbl>

—_—) ) ) ) ) =)

<dbl>

_—) ) ) ) ) =)

subject

rep potato buttery

<dbl> <dbl>

3
3
16
16
15
15

1
2
1
2
1
2

<dbl>
2.9
14
11
9.9
1.2
8.8

<dbl>
7]
7]
6.4
5.9
0.1
3
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Example: french-fries - pivoting into long form

fries_long <- french_fries %>%
pivot_longer(cols = potato:painty,
names_to = "type",
values_to = "rating") %>%
mutate(type = as.factor(type))
fries_long
## # A tibble: 3,480 x 6

7 time treatment subject rep type rating
## <dbl> <dbl> <dbl> <dbl> <fct> <dbl>
## 1 1 1 3 1 potato 2.9
## 2 1 1 3 1 buttery 0

## 3 1 1 3 1 grassy 0 25 /80



filter()

choose observations from your data
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filter(): example

fries_long %>%
filter(subject == 10)
## # A tibble: 360 x 6

#i time treatment subject rep type rating

## <dbl> <dbl> <dbl> <dbl> <fct> <dbl>

## 1 1 1 16 1 potato 11

## 2 1 1 10 1 buttery 6.4

## 3 1 1 16 1 grassy 0

## 4 1 1 10 1 rancid 0

## 5 1 1 16 1 painty 0

## 6 1 1 16 2 potato 9.9

## 7 1 1 10 2 buttery 5.9 37/82



filter(): details

Filtering requires comparison to find the subset of observations
of interest. What do you think the following mean?

e subject !'= 10
e X > 10
e X >= 10

e class %in% c("A", "B")

lis.na(y)

03 :00
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filter(): details

subject != 10
Find rows corresponding to all subjects except subject 10

X > 10
find all rows where variable x has values bigger than 10
X >= 10

finds all rows variable x is greater than or equal to 10.
class %in% c("A", "B")
finds all rows where variable class is either A or B

lis.na(y)

finds all rows that DO NOT have a missing value for variable y 20789



Your turn: open french-fries.Rmd

Filter the french fries data to have:

e only week 1

e oil type 1 (oil type is called treatment)
e oil types 1 and 3 but not 2

e weeks 1-4 only
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French Fries Filter: only week 1

fries_long %>% filter(time == 1)

## # A tibble: 360 x 6

7 time treatment subject rep type rating
## <dbl> <dbl> <dbl> <dbl> <fct> <dbl>
## 1 1 1 3 1 potato 2.9
## 2 1 1 3 1 buttery 0
## 3 1 1 3 1 grassy 0
## 4 1 1 3 1 rancid 0
## 5 1 1 3 1 painty 5.5
## 6 1 1 3 2 potato 14
## 7 1 1 3 2 buttery

## 8 1 1 3 2 grassy
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French Fries Filter: oil type 1

fries_long %>% filter(treatment == 1)

## # A tibble: 1,160 x 6

7 time treatment subject rep type rating
## <dbl> <dbl> <dbl> <dbl> <fct> <dbl>
## 1 1 1 3 1 potato 2.9
## 2 1 1 3 1 buttery 0
## 3 1 1 3 1 grassy 0
## 4 1 1 3 1 rancid 0
## 5 1 1 3 1 painty 5.5
## 6 1 1 3 2 potato 14
## 7 1 1 3 2 buttery

## 8 1 1 3 2 grassy
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French Fries Filter: oil types 1 and 3 but not 2

fries_long %>% filter(treatment != 2)

## # A tibble: 2,320 x 6

7 time treatment subject rep type

## <dbl> <dbl> <dbl> <dbl> <fct>
## 1 1 1 3 1 potato
## 2 1 1 3 1 buttery
## 3 1 1 3 1 grassy
## 4 1 1 3 1 rancid
## 5 1 1 3 1 painty
## 6 1 1 3 2 potato
## 7 1 1 3 2 buttery
## 8 1 1 3 2 grassy

rating
<dbl>
2.9
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French Fries Filter: weeks 1-4 only

fries_long %>% filter(time %in% c("1", "2", "3",
## # A tibble: 1,440 x 6

7 time treatment subject rep type rating
## <dbl> <dbl> <dbl> <dbl> <fct> <dbl>
## 1 1 1 3 1 potato 2.9
## 2 1 1 3 1 buttery 0
## 3 1 1 3 1 grassy 0
## 4 1 1 3 1 rancid 0
## 5 1 1 3 1 painty 5.5
## 6 1 1 3 2 potato 14
## 7 1 1 3 2 buttery

## 8 1 1 3 2 grassy
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about %1n%

[demo]
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e Chooses which variables to keep in the data set.

e Useful when there are many variables but you only need some of
them for an analysis.
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select( ): a comma separated list of variables, by name.

french_fries %>%

select(time,

treatment,

subject)
## # A tibble: 696 x 3
## time treatment subject
## <dbl> <dbl> <dbl>
## 1 1 1 3
## 2 3
## 3 1 1 10
## 4 1 1 10
## 5 1 1 15 47/82



select(): drop selected variables by prefixing with -

french_fries %>%
select(-time,

-treatment,
-subject)
## # A tibble: 696 x 6
## rep potato buttery grassy rancid painty
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 2.9 0 0 0 5.5
## 2 2 14 0 0 1.1 0
## 3 1 11 6.4 0 0 0
## 4 2 9.9 5.9 2.9 2.2 0
## 5 1 1.2 0.1 0 1.1 5.1 48/82



Inside select () you can use text-matching of the names like
starts_with(), ends_with(), contains(),matches(), or
everything()

french_fries %>%
select(contains("e"))
## # A tibble: 696 x 5

i time treatment subject rep buttery
HH <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 3 1 0
## 2 1 1 3 2 0
## 3 1 1 10 1 6.4
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select(): Using it

You can use the colon, :, to choose variables in order of the
columns

french_fries %>%
select(time:subject)
## # A tibble: 696 x 3

## time treatment subject
## <dbl> <dbl> <dbl>
## 1 1 1 3
## 2 3
## 3 1 1 16
## 4 1 1 10
## 5 1 1 15 50/82



Your turn: back to the
french fries data

select () time, treatment and rep

select() subject through to rating
drop subject

i@3 .00
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Artwork by @allison_horst



mutate(): create a new variable; keep existing ones

french_fries
## # A tibble: 696 x 9

## time treatment subject rep potato buttery

## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

## 1 1 1 3 1 2.9 0

## 2 1 1 3 2 14 0

## 3 1 1 10 1 11 6.4

## 4 1 1 10 2 9.9 5.9

## 5 1 1 15 1 1.2 0.1

## 6 1 1 15 2 8.8 3

## 7 1 1 16 1 9 2.6

## 8 1 1 16 2 8.2 4.4 53/82



mutate(): create a new variable; keep existing ones

french_fries %>%
mutate(rainty = rancid + painty)
## # A tibble: 696 x 10

## time treatment subject rep potato buttery

## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

## 1 1 1 3 1 2.9 0

## 2 1 1 3 2 14 0

## 3 1 1 10 1 11 6.4

## 4 1 1 10 2 9.9 5.9

## 5 1 1 15 1 1.2 0.1

## 6 1 1 15 2 8.8 3

## 7 1 1 16 1 9 2.6 54/82



Your turn: french fries

Compute a new variable called 1rating by taking a log of the
rating

9200
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summarise( ): boil data down to one row observation

fries_long

## # A tibble: 6 x 6
7t time treatment subject rep type rating

##  <dbl> <dbl> <dbl> <dbl> <fct> <dbl>
## 1 1 1 3 1 potato 2.9
## 2 1 1 3 1 buttery 0
## 3 1 1 3 1 grassy 0
## 4 1 1 3 1 rancid 0
## 5 1 1 3 1 painty 5.5
## 6 1 1 3 2 potato 14

56/82



summarise( ): boil data down to one row observation

fries_long %>%
summarise(rating

## # A tibble: 1 x 1

7 rating

#H <dbl>

## 1  3.16

mean(rating, na.rm = TRUE))
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What if we want a
summary for each

type?

use group_by ()
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Using summarise() + group_by()

Produce summaries for every group:

fries_long %>%
group_by(type) %>%
summarise(rating

## # A tibble: 5 x 2

7 type rating

##  <fct> <dbl>

## 1 buttery 1.82

## 2 grassy 0.664

## 3 painty 2.52

## 4 potato 6.95

## 5 rancid 3.85 59/82

mean(rating, na.rm=TRUE))



Your turn: Back to
french-fries.Rmd

Compute the average rating by subject
Compute the average rancid rating per week

i@3 .00
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french fries answers

fries_long %>%
group_by(subject) %>%

Ha
A
##
##
##
##
##
7
##

summarise(rating
# A tibble:

subject
<dbl>

3

10

15

16

19

31

AN O A QWO N =

12 x 2
rating
<dbl>
2.46
4.24
2.16
3.00
4.54
4.00

mean(rating, na.rm=TRUE))
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french fries answers

fries_long %>%
filter(type == "rancid") %>%
group_by(time) %>%

summarise(rating

## # A tibble: 19 x 2

##
##
##
##
##
7
##

time rating

<dbl>
1 1
2 2
3 3
4 4
5 5

<dbl>
2.36
2.85
3.72
3.60
3.53

mean(rating, na.rm=TRUE))
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arrange( ): orders data by a given variable.

Useful for display of results (but there are other uses!)

fries_long %>%
group_by(type) %>%
summarise(rating
## # A tibble: 5 x 2
##  type rating
##  <fct> <dbl>
## 1 buttery 1.82
## 2 grassy 0.664
## 3 painty 2.52
## 4 potato 6.95
## 5 rancid 3.85

mean(rating, na.rm=TRUE))
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fries_long %>%
group_by(type) %>%
summarise(rating
arrange(rating)

## # A tibble: 5 x 2

7 type rating

##  <fct> <dbl>

## 1 grassy 0.664

## 2 buttery 1.82

## 3 painty 2.52

## 4 rancid 3.85

## & potato 6.95 64/82

mean(rating, na.rm=TRUE)) %>



Your turn: french-
fries.Rmd - arrange

Arrange the average rating by type in decreasing order
Arrange the average subject rating in order lowest to highest.

9200
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arrange( ) answers

fries_long %>%

group_by(type) %>%

summarise(rating

## # A tibble:

7 type rating

##  <fct>
## 1 potato
## 2 rancid
## 3 palnty
## 4 buttery
## 5 grassy

<dbl>
6.95
3.85
2.52
1.82
0.664

mean(rating, na.rm=TRUE)) %>
arrange(desc(rating))
S5 X 2
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arrange( ) answers

fries_long %>%
group_by(subject) %>%

A
##
##
##
##
7
7
##t

summarise(rating

arrange(rating)

# A tibble:

subject
<dbl>
/8

79

15

3

52

A DN WO N —

12 x 2
rating
<dbl>
1.94
1.94
2.16
2.46
2.72

mean(rating, na.rm=TRUE)) %>
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count ( ) the number of things in a given column

fries_long %>%
count(type, sort
## # A tibble: 5 x 2
7 type n
##  <fct> <int>
## 1 buttery 696
## 2 grassy 696
## 3 palnty 696
## 4 potato 696
## 5 rancid 696

TRUE)
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Your turn: count ()

e count the number of subjects
e count the number of types

02

: 00
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French Fries: Putting it
together to problem
solve
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French Fries: Are ratings similar?

The scales of the ratings are
quite different. Mostly the
chips are rated highly on
summarise ( potato'y, but low on grassy.

fries_long %>%
group_by(type) %>%

m = mean(rating,
na.rm = TFI
sd = sd(rating,

na.rm = TRL
arrange(-m)
## # A tibble: 5 x 3
## type m S
##  <fct> <dbl> <dbl

## 1 potato 6.95 3.5 71/82



French Fries: Are ratings similar?

ggplot(fries_long,
aes(x = type,
y = rating)) +

geom_boxplot()

[

[ ]

[

1
grassy

painty
type
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French Fries: Are reps like each other?

fries_spread <- fries_long %>%

fries_spread
## # A tibble:

##
##
##
##
7
7

AN W N —

time treatment subject

<dbl>

1

1
1
1

1,746 x 6

<dbl> <dbl>
1 3
1 3
1 3
1 3

pivot_wider (names_from = rep,
values_from = rating)

type
<fct>
potato
buttery
grassy
rancid

0
0
0

‘o

<dbl> <dbl>
2.

9 14
0
0
1.1
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French Fries: Are reps like each other?

summarise(fries_spread,
r =cor( 17,
## # A tibble: 1 x 1

## r
## <dbl>
## 1 0.668

U

)

use

"complete.obs")
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ggplot(fries_spread,

aes(x = 17,
y = '27)) +
geom_point() +
labs(title = "Data is poor quality: the replica
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Data is poor quality: the replicates do not look like each other!

15=

'
o
-

15
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frie

group_by(type) %>%
mmarise(r = cor(x

Su

French Fries: Replicates by rating type

s_spread %>%

## # A tibble: 5 x 2

##
##
## 1
## 2
## 3
## 4

type r
<fct> <dbl>

buttery 6.650
grassy 6.239
painty 6.479
potato 0.6176

y
use

)

"complete.obs"))
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French Fries: Replicates by rating type

ggplot(fries_spread, aes(x="1", y="2")) +
geom_point() + facet_wrap(~type, ncol = 5)
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Lab exercise: Exploring data PISA data

Open pisa.Rmd on rstudio cloud.
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Lab Quiz

Time to take the lab quiz.
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Learning is where you:

1. Receive information accurately
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https://twitter.com/allison_horst?lang=en

