ETC5510: Introduction to Data Analysis

Week of Tidy Data Stuart Lee and Nick Tierney 16th Mar 2020

About your instructors

Stuart

- Restance
 Bachelor of Mathematical Sciences at University of Adelaide
- PhD Candidate in Statistics at Monash EBS.
- Research: genomics, data visualisation, statistical computing
- Vertication
 verticat

Steph

- Bachelor of Economics and Bachelor of Commerce from Monash
- Studying a Masters of Statistics at QUT, based at Monash.
- Loves to read I, any and all recommendations are welcome.
- Has an R package called taipan, and another called sugarbag.

- Bachelor of Commerce 2018
- Honours in Econometrics
 2019 with Di Cook
- Commenced PhD programme 2020
- Created her first ever R package, quickdraw
- Loves puzzles games like jigsaws ³/₅.

- Psychological Sciences UQ
- PhD in Statistics at QUT.
- Research: missing data, data visualisation, statistical computing
- R 📦: naniar, visdat,
- #rstats Curious w Saskia Freytag
- ♥ outdoors, especially: ◀,
 ▶, and Ⅳ.

- Professor at Monash University in Melbourne Australia, doing research in statistics, data science, visualisation, and statistical computing.
- Created the current version of the course
- Likes to play all sorts of sports, tennis, soccer, hockey, cricket, and go boogie boarding.

Your Turn: Making the groups

We are going to set up the groups for doing assignment work.

1. Find your name from the list at this link

- 2. Find the other people in the class with the same quote as you (feel free to wander around the class!)
- 3. Grab your gear and claim a table to work together at.

Your Turn: Ask your team mates these questions:

1. What is one food you'd never want to taste again?

2. If you were a comic strip character, who would you be and why? LASTLY, come up with a name for your team (we have provided a suggested name, but you are free to change it!) and tell this to a tutor, along with the names of members of the team.

Traffic Light System

Traffic Light System

Red Post-it

- I need a hand
- Slow down

Green Post-it

- I am up to speed
- I have completed the thing

Recap

- packages are installed with _ ?
- packages are loaded with _ ?
- Why do we care about Reproducibility?
- Output + input of rmarkdown
- I have an assignment group
- If I have an assignment group, have recorded my assignment group in the ED survey

Today: Outline

- An aside on learning
- Tidy Data
- Terminology of data
- Different examples of data
- Steps in making data tidy
- Lots of examples

A note on difficulty

- This is not a programming course it is a course about **data**, **modelling**, **and computing**.
- At the moment, you might be sitting there, feeling a bit confused about where we are, what are are doing, what R is, and how it even works.
- That is OK!
- The theory of this class will only get you so far
- The real learning happens from doing the data analysis the **pressure of a deadline can also help.**

Tidy Data

You're ready to sit down with a newly-obtained dataset, excited about how it will open a world of insight and understanding, and then find you can't use it. You'll first have to spend a significant amount of time to restructure the data to even begin to produce a set of basic descriptive statistics or link it to other data you've been using.

--John Spencer (Measure Evaluation)

Tidy Data

"Tidy data" is a term meant to provide a framework for producing data that conform to standards that make data easier to use. Tidy data may still require some cleaning for analysis, but the job will be much easier.

--John Spencer (Measure Evaluation)

- Data from a study on US grad programs.
- Originally came in an excel file containing rankings of many different programs.
- Contains information on four programs:
 - 1. Astronomy
 - 2. Economics
 - 3. Entomology, and
 - 4. Psychology

```
library(tidyverse)
grad <- read_csv(here::here("slides/data/graduate</pre>
grad
## # A tibble: 412 x 16
      subject Inst AvNumPubs AvNumCits PctFacGran
##
##
   <chr> <chr> <dbl>
                                   <db1>
                                                < db
                       0.9
                                                 31
## 1 econom... ARIZ...
                                   1.57
                    0.79
                                                 77
## 2 econom... AUBU...
                                    0.64
                                                 43
##
   3 econom... BOST...
                         0.51
                                    1.03
                         0.49
                                                 36
##
   4 econom... BOST...
                                   2.66
## 5 econom... BRAN...
                         0.3
                                    3.03
                                                 36
                         0.84
                                   2.31
##
   6 econom... BROW...
                                                 27
```

Good things about the format:

##	#	A tibble	e: 6 x	16
##		subject	Inst	AvNu
##		<chr></chr>	<chr></chr>	
##	1	econom	ARIZ	
##	2	econom	AUBU	
##	3	econom	BOST	
##	4	econom	BOST	
##	5	econom	BRAN	
##	6	econom	BROW	
##	#	with 9	9 more	vari
##	#	PctFen	naleStu	ıd <d< td=""></d<>

Rows contain information about the institution

Columns contain types of information, like average number of publications, average number of citations, % completion,

Easy to make summaries:

grad		%>% count	t(subject)
##	#	A tibble:	4 x 2
##		subject	n
##		<chr></chr>	<int></int>
##	1	astronomy	<i>y</i> 32
##	2	economics	117
##	3	entomolog	y 27
##	4	psycholog	y 236

Easy to make summaries:

```
grad %>%
  filter(subject == "economics") %>%
  summarise(
   mean = mean(NumStud),
   s = sd(NumStud)
## # A tibble: 1 x 2
## mean s
## <dbl> <dbl>
## 1 60.7 39.4
```

Easy to make a plot

```
grad %>%
filter(subject == "ec
ggplot(aes(x = NumStu
geom_point() +
theme(aspect.ratio =
```


Your Turn: download exercises for today's lecture!

- Notice the data / directory with many datasets!
- Open graduate-programs.Rmd
- Answer these questions:
 - "What is the average number of graduate students per economics program?"
 - "What is the best description of the relationship between number of students and median time to degree?"
- Use the traffic light system if you need a hand.

What could this image say about R?

Terminology of data: Variable

- A quantity, quality, or property that you can measure.
- For the grad programs, these would be all the column headers.

##	# /	A tibble.	: 412 >	x 16		
##		subject	Inst	AvNumPubs	AvNumCits	PctFacGran
##		<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<db< td=""></db<>
##	1	econom	ARIZ	0.9	1.57	31
##	2	econom	AUBU	0.79	0.64	77
##	3	econom	BOST	0.51	1.03	43
##	4	econom	BOST	0.49	2.66	36
##	5	econom	BRAN	0.3	3.03	36
##	6	econom	BROW	0.84	2.31	27
##	7	econom	CALI	0.99	2.31	56

25/62

Terminology of data: Observation

- A set of measurements made under similar conditions
- Contains several values, each associated with a different variable.
- For the grad programs, this is institution, and program, uniquley define the observation.

##	# /	A tibble.	: 412 >	x 16		
##		subject	Inst	AvNumPubs	AvNumCits	PctFacGran
##		<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<db< td=""></db<>
##	1	econom	ARIZ	0.9	1.57	31
##	2	econom	AUBU	0.79	0.64	77
##	3	econom	BOST	0.51	1.03	43
##	4	econom	BOST	0.49	2.66	36

Terminology of data: Value

- Is the state of a variable when you measure it.
- The value of a variable typically changes from observation to observation.
- For the grad programs, this is the value in each cell

A tibble: 412 x 16

##		subject	Inst	AvNumPubs	AvNumCits	PctFacGran
##		<chr></chr>	<chr></chr>	<db1></db1>	<dbl></dbl>	<db< td=""></db<>
##	1	econom	ARIZ	0.9	1.57	31
##	2	econom	AUBU	0.79	0.64	77
##	3	econom	BOST	0.51	1.03	43
##	4	econom	BOST	0.49	2.66	36
##	5	econom	BRAN	0.3	3.03	36

Tidy tabular form

Tabular data is a set of values, each associated with a variable and an observation. Tabular data is **tidy** iff (if and only if):

- Each variable in its own column,
- Each observation in its own row,
- Each value is placed in its own cell.

country	year	cases	population	country	year	cases	population	country	year	cases	populatio
Afghanstan	1.00	45	18.07071	manistari	1000	740	100010	Afglanstan	99)		1998-07
Afghanistan	2000	2666	20:95360	manistari	2000	2000	LUUUUU	Afg.apstan		6666	2(69)36
Brazi	1999	37737	172006362	1.2.11	1000	07707	1120000	Bradi	99	37737	1720036
Brazi	2000	8(488	174:04898	1.2.11	2000	00-00	1140040	Bradil		80488	17460/89
China	1999	212258	1272915272	- The	1000	212200	TETEOTOE	Chila	99	212238	127201)27
Chin	20	21 66	1280 28583	- Cina	2000	210700	120042000	Chila	Õ	216766	128(42)58
·	va	riables			obse	rvations	6		V	alues	

The grad program

Is in **tidy** tabular form.

##	# /	A tibble.	: 412 2	x 16		
##		subject	Inst	AvNumPubs	AvNumCits	PctFacGran
##		<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<db< td=""></db<>
##	1	econom	ARIZ	0.9	1.57	31
##	2	econom	AUBU	0.79	0.64	77
##	3	econom	BOST	0.51	1.03	43
##	4	econom	BOST	0.49	2.66	36
##	5	econom	BRAN	0.3	3.03	36
##	6	econom	BROW	0.84	2.31	27
##	7	econom	CALI	0.99	2.31	56
##	8	econom	CARN	0.43	1.67	35

Different examples of data

For each of these data examples, **let's try together to identify the variables and the observations** - some are HARD!

Your Turn: Genes experiment 🤪

A tibble: 3 x 12

##		id	`WI-6.R1`	`WI-6.R2`	`WI-6.R4`	`WM-6.R1`
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	Gene…	2.18	2.20	4.20	2.63
##	2	Gene…	1.46	0.585	1.86	0.515
##	3	Gene…	2.03	0.870	3.28	0.533
##	#	with	4 more va	ariables:	`WI-12.R4`	<dbl>, `W</dbl>
##	#	` <i>WM</i> -	12.R2` <db< td=""><td>ol>, `WM−12</td><td>2.R4` <dbl></dbl></td><td>></td></db<>	ol>, `WM−12	2.R4` <dbl></dbl>	>

Melbourne weather 😨

##	# /	A tibble: 1,	593 x 7	12					
##		X1	X2	X3	X4	X5	X9		
##		<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<d< td=""><td></td></d<>	
##	1	ASN00086282	1970	07	TMAX	141	124		
##	2	ASN00086282	1970	07	TMIN	80	63		
##	3	ASN00086282	1970	07	PRCP	3	30		
##	4	ASN00086282	1970	08	TMAX	145	128		
##	5	ASN00086282	1970	08	TMIN	50	61		
##	6	ASN00086282	1970	08	PRCP	0	66		
##	7	ASN00086282	1970	09	TMAX	168	168		
##	8	ASN00086282	1970	09	TMIN	19	02	· 90)
##	9	ASN00086282	1970	09	PRCP	0	02	33/0	6 2

Tuberculosis notifications data taken from WH

##	# A	tibble:	: 3,202	2 x 22			
##		country	year	new_sp_m04	new_sp_m514	new_sp_	
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<	
##	1	Afghan	1997	NA	NA		
##	2	Afghan	1998	NA	NA		
##	3	Afghan	1999	NA	NA		
##	4	Afghan	2000	NA	NA		
##	5	Afghan	2001	NA	NA		
##	6	Afghan	2002	NA	NA		
##	7	Afghan	2003	NA	NA		
##	8	Afghan	2004	NA	NA	92.6	10
##	9	Afghan	2005	NA	NA	02.0	34/6

><

French fries

- 10 week sensory experiment
- 12 individuals assessed taste of french fries on several scales (how potatoy, buttery, grassy, rancid, paint-y do they taste?)
- fried in one of 3 different oils, replicated twice.

French fries: Variables? Observations?

A tibble: 696 x 9

##		time	treatment	subject	rep	potato	buttery
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	1	1	3	1	2.9	0
##	2	1	1	3	2	14	0
##	3	1	1	10	1	11	6.4
##	4	1	1	10	2	9.9	5.9
##	5	1	1	15	1	1.2	0.1
##	6	1	1	15	2	8.8	3
##	7	1	1	16	1	9	2.6
##	8	1	1	16	2	8.2	4.4
##	9	1	1	19	1	7	3.2

Rude Recliners data

- data is collated from this story: 41% Of Fliers Think You're Rude If You Recline Your Seat
- What are the variables?

##	#	A tibble	e: 3 x 6			
##		V1	`V2:Always`	`V2:Usually`	`V2:About	ha
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>		
##	1	No, no…	124	145		
##	2	Yes, s…	9	27		
##	3	Yes, v…	3	3		

Messy vs tidy

Messy data is messy in its own way. You can make unique solutions, but then another data set comes along, and you have to again make a unique solution. Tidy data can be though of as legos. Once you have this form, you can put it together in so many different ways, to make different analyses.

Data Tidying verbs

- pivot_longer: Specify the names_to (identifiers) and the values_to (measures) to make longer form data.
- pivot_wider: Variables split out in columns
- separate: Split one column into many

one more time: pivot_longer

- cols to select are those that represent values, not variables.
- **names_to** is the name of the variable whose values for the column names.
- values_to is the name of the variable whose values are spread over the cells.

pivot_longer: example

##	#	A tibble: 3	x 3
##		country	`1999`
##	*	<chr></chr>	<int></int>
##	1	Afghanistan	745
##	2	Brazil	37737
##	3	China	212258

table4a %>% pivot_longer(cols = c names_to values_t ## # A tibble: 6 x 3 *## country year ## <chr> <chr>* ## 1 Afghanistan 1999 *## 2 Afghanistan 2000* 1999 ## 3 Brazil ## 4 Brazil 2000 ## 5 China 1999

Tidying genes data

Tell me what to put in the following?

- **cols** are the columns that represent values, not variables.
- **names_to** is the name of new variable whose values for the column names.
- **values_to** is the name of the new variable whose values are spread over the cells.

##	#	A tibb	le: 3 x 12			
##		id	`WI-6.R1`	`WI-6.R2`	`WI-6.R4`	`WM-6.R1`
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	Gene	2.18	2.20	4.20	2.63
##	2	Gene	1.46	0.585	1.86	0.515
##	3	Gene…	2.03	0.870	3.28	0.533

Tidy genes data

##	#	A tibble: 3 x 12	genes_long <- genes %>%
##		id `WI-6.R1` `W	<pre>pivot_longer(cols = -id,</pre>
##		<chr> <dbl></dbl></chr>	names_to =
##	1	Gene 2.18	values_to =
##	2	Gene 1.46	
##	3	Gene 2.03	genes_long
##	#	with 4 more vari	## # A tibble: 33 x 3
##	#	`WM-12.R2` <dbl></dbl>	## id variable exp
			<pre>## <chr> <chr> <dbl< pre=""></dbl<></chr></chr></pre>
			## 1 Gene 1 WI-6.R1 2.1
			## 2 Gene 1 WI-6.R2 2.2
			## 3 Gene 1 WI-6.R4 4.2

Separate columns

##	# /	A tibb	010	e: 33 x 3	
##		id		variable	
##		<chr></chr>	>	<chr></chr>	
##	1	Gene	1	WI-6.R1	
##	2	Gene	1	WI-6.R2	
##	3	Gene	1	WI-6.R4	
##	4	Gene	1	WM-6.R1	
##	5	Gene	1	WM-6.R2	
##	6	Gene	1	WI-12.R1	
##	7	Gene	1	WI-12.R2	
##	8	Gene	1	WI-12.R4	
##	9	Gene	1	WM-12.R1	

genes_long %>% separate(col = variak into = c("tr ## # A tibble: 33 x 4 *## id trt left ## <chr> <chr< <chr> <chr> <chr> <chr< <c* ## 1 Gene 1 WI 6.R1 ## 2 Gene 1 WI 6.R2 ## 3 Gene 1 WI 6.R4 6.R1 ## 4 Gene 1 WM ## 5 Gene 1 WM 6.R2 12.R## 6 Gene 1 WI

44/62

Separate columns

genes_long_tidy <- genes_long %>%
 separate(variable, c("trt", "leftover"), "-") %
 separate(leftover, c("time", "rep"), "\\.")

genes_long_tidy

A tibble: 33 x 5

##		id		trt	time	rep	expr
##		<chr></chr>	2	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>
##	1	Gene	1	WI	6	R1	2.18
##	2	Gene	1	WI	6	R2	2.20
##	3	Gene	1	WI	6	R4	4.20
##	4	Gene	1	WM	6	R1	2.63

Now let's use pivot_wider to examine different aspects

Examine treatments against each other

Generally, some negative association within each gene, WM is low if WI is high.

Examine replicates against each other

Roughly, replicate 4 is like replicate 1, eg if one is low, the other is low.

That's a good thing, that the replicates are fairly similar.

Your turn: Demonstrate with koala bilby data (live code)

Here is a little data to practice pivot_longer, pivot_wider and separate on.

- Read over koala-bilby.Rmd
- pivot_longer the data into long form, naming the two new variables, label and count
- Separate the labels into two new variables, animal, state
- pivot_wider the long form data into wide form, where the columns are the states.
- pivot_wider the long form data into wide form, where the columns are the animals.

Exercise 1: Rude Recliners

- Open rude-recliners.Rmd
- This contains data from the article 41% Of Fliers Think You're Rude If You Recline Your Seat.
- V1 is the response to question: "Is it rude to recline your seat on a plane?"
- V2 is the response to question: "Do you ever recline your seat when you fly?".

##	#	A tibble	e: 3 x 6		
##		V1	`V2:Always`	`V2:Usually`	`V2:About ha
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	
##	1	No, no…	124	145	
##	2	Yes, s…	9	27	

Exercise 1: Rude Recliners (15 minutes)

Answer the following questions in the rmarkdown document.

- A) What are the variables and observations in this data?
- 1B) Put the data in tidy long form (using the names V2 as the key variable, and count as the value).
- 1C) Use the rename function to make the variable names a little shorter.

Exercise 1: Answers

Your Turn: Turn to the people next to you and ask 2 questions:

- Are you more of a dog or a cat person?
- What languages do you know how to speak?

Exercise 2: Tuberculosis Incidence data (15 minutes)

Open: tb-incidence.Rmd

Tidy the TB incidence data, using the Rmd to prompt questions.

Exercise 3: Currency rates (15 minutes)

- open currency-rates.Rmd
- read in rates.csv
- Answer the following questions:
- 1. What are the variables and observations?
- 2. pivot_longer the five currencies, AUD, GBP, JPY, CNY, CAD, make it into tidy long form.
- 3. Make line plots of the currencies, describe the similarities and differences between the currencies.

Exercise 4: Australian Airport Passengers (optional!)

- Open oz-airport.Rmd
- Contains data from the web site Department of Infrastructure, Regional Development and Cities, containing data on Airport Traffic Data 1985–86 to 2017–18.
- Read the dataset, into R, naming it passengers
- Tidy the data, to produce a data set with these columns
 - airport: all of the airports.
 - year
 - type_of_flight: DOMESTIC, INTERNATIONAL
 - bound: IN or OUT

Time to take the lab quiz.

Learning is where you:

- 1. Receive information accurately
- 2. Remember the information (long term memory)
- 3. In such a way that you can reapply the information when appropriate

Your Turn:

Go to the data source at this link: bit.ly/dmac-noaa-data

- "Which is the best description of the temperature units?"
- "What is the best description of the precipitation units"
- "What does -9999 mean?"

Recap

- Traffic Light System: Green = "good!"; Red = "Help!"
- R + Rstudio
- Functions are _
- columns in data frames are accessed with _ ? If you have questions, place a red sticky note on your laptop.

If you are done, place a green sticky on your laptop

Traffic Light System Red Post it

- I need a hand
- Slow down

Green Post it

- I am up to speed
- I have completed the thing

