
ETC5510: Introduction to Data AnalysisETC5510: Introduction to Data Analysis
Week 10, part AWeek 10, part A

Regression and Decision Trees

Lecturer: Nicholas Tierney & Stuart Lee
Department of Econometrics and Business Statistics

 nicholas.tierney@monash.edu
May 2020

recap
networks

2/45

Upcoming
Peer evaluation of assignment #2 on Wednesday
Project milestone #3 due this Friday, if you need guidance attend
consultation

3/45

Overview
What is a regression tree?
How is it computed?
Deciding when its a good �t

rmse
Comparison with linear models
Using multiple variables
Next class:

How a classi�cation tree differs from a regression tree?

4/45

Example

5/45

Let's predict Y using a linear model
df_lm <- lm(y ~ x, df)

6/45

Assessing model �t
Look at residuals
Look at mean square error

7/45

Looking at the residuals: this is bad!

It basically looks like the data!

8/45

Looking at the Mean square error (MSE)

In R code:
calculate example of linear model MSE

MSE(y) =
(−∑i=N

i=1 yi y ̂ i)
2

N

9/45

Let's use a different model: "rpart"
library(rpart)
df_lm <- lm(y~x, data=df) - similar to lm! But rpart.
df_rp <- rpart(y~x, data=df)

10/45

Look at residuals
ggplot(df_rp_aug,
 aes(x = x,
 y = y)) +
 geom_point() +
 geom_line(aes(y = .fitted), colour = "salmon", size = 2)

11/45

Look at MSE

12/45

Comparing lm vs rpart

13/45

What the output of a linear model looks like

Call:
lm(formula = y ~ x, data = df)

Coefficients:
(Intercept) x
0.8806 -2.2165

14/45

What the output of a rpart looks like
n= 100

node), split, n, deviance, yval
* denotes terminal node

1) root 100 359.245100 0.8081071
2) x>=0.2775916 24 16.840100 -1.4822830
4) x>=0.3817438 12 3.832238 -2.0814410 *
5) x< 0.3817438 12 4.392090 -0.8831252 *
3) x< 0.2775916 76 176.745400 1.5313880
6) x< 0.1426085 61 41.562800 0.9365995
12) x>=-0.3999242 50 24.519860 0.7035330
24) x< 0.05905847 41 11.729940 0.4807175
48) x>=-0.1455513 25 5.653876 0.2281914 *
49) x< -0.1455513 16 1.990829 0.8752895 *
25) x>=0.05905847 9 1.481498 1.7185820 *
13) x< -0.3999242 11 1.981477 1.9959930 *
7) x>=0.1426085 15 25.842970 3.9501960 *

15/45

Predictions from linear model vs rpart

16/45

So what is going on?
A linear model asks "What line �ts through these points, to minimise
the error"?
A decision tree model asks "How can I best break the data into
segments, to minimize some error?"

17/45

A linear model: draws the line of best �t

18/45

A regression tree: segments the data to reduce some error

19/45

Regression trees
Regression trees recursively partition the data, and use the average
response value of each partition as the model estimate
It is a computationally intense technique that examines all possible
partitions, and choosing the BEST partition by optimizing some
criteria
For regression, with a quantitative response variable, the criteria is
called ANOVA:

where , and are the equivalent values
for the two subsets created by partitioning.

S − (S + S)ST SL SR

S = ∑(−ST yi ȳ)2 S , SSL SR

20/45

Break down: What is ?S = ∑(−ST yi ȳ)2

21/45

Break down: What is ?S = ∑(−ST yi ȳ)2

22/45

 ? Choose a point, compare the left and rightSSL SSR

23/45

 ? Choose a point, compare the left and rightSSL SSR

24/45

 ? Choose a point, compare the left and rightSSL SSR

25/45

 ? Choose a point, compare the left and rightSSL SSR

26/45

 ? Choose a point, compare the left and rightSSL SSR

27/45

Across all values of x?

28/45

And if we repeated this again
This is how the data is split:

29/45

We can represent these splits in a tree format:
library(rpart.plot)
rpart.plot(df_rp)

30/45

Your turn: compute a regression tree
Using the small data set, manually compute a regression tree model
for the data. Sketch the model.
d <- tibble(x=c(1, 2, 3, 4, 5), y=c(10, 12, 5, 4, 3))
d
ggplot(d, aes(x=x, y=y)) +
 geom_???()

31/45

Understanding rpart
df_rp
n= 100

node), split, n, deviance, yval
* denotes terminal node

1) root 100 359.245100 0.8081071
2) x>=0.2775916 24 16.840100 -1.4822830
4) x>=0.3817438 12 3.832238 -2.0814410 *
5) x< 0.3817438 12 4.392090 -0.8831252 *
3) x< 0.2775916 76 176.745400 1.5313880
6) x< 0.1426085 61 41.562800 0.9365995
12) x>=-0.3999242 50 24.519860 0.7035330
24) x< 0.05905847 41 11.729940 0.4807175
48) x>=-0.1455513 25 5.653876 0.2281914 *
49) x< -0.1455513 16 1.990829 0.8752895 *
25) x>=0.05905847 9 1.481498 1.7185820 *
13) x< -0.3999242 11 1.981477 1.9959930 *
7) x>=0.1426085 15 25.842970 3.9501960 *

32/45

This is how the model looks:

33/45

Stopping rules
Its an algorithm. Why did it stop at 7 terminal nodes?
Stopping rules are needed, else the algorithm will keep �tting until
every observation is in its own group.
Control parameters set stopping points:

minsplit: minimum number of points in a node that algorithm is
allowed to split
minbucket: minimum number of points in a terminal node

We can also look at the change in value of at
each split, and if the change is too small, stop.

S − (S + S)ST SL SR

34/45

You can change the options to �t a different model
An re-�t, the model will change. Here we reduce the minbucket
parameter.
df_rp_m10 <- rpart(y~x, data=df,
 control = rpart.control(minsplit = 2))

35/45

This yields a (slightly) more complex model.

36/45

What's computed?

37/45

Residuals
ggplot(df_rp_aug, aes(x=x, y= .resid)) + geom_point() +
 ylab("residuals") + scale_x_continuous(breaks=seq(-0.5, 0.5, 0.1))

38/45

Goodness of �t - Root Mean Square Error
gof <- printcp(df_rp, digits=3)

Regression tree:
rpart(formula = y ~ x, data = df)

Variables actually used in tree construction:
[1] x

Root node error: 359/100 = 3.59

n= 100

CP nsplit rel error xerror xstd
1 0.4611 0 1.000 1.008 0.1426
2 0.3044 1 0.539 0.580 0.0891
3 0.0419 2 0.235 0.301 0.0643
4 0.0315 3 0.193 0.248 0.0621
5 0.0240 4 0.161 0.246 0.0623
6 0.0114 5 0.137 0.218 0.0617
7 0.0100 6 0.126 0.216 0.0616 39/45

goodness of �t?
The relative error is . For this example, after 6 splits it is
0.1371214. So 0.8628786.
1-sum(df_rp_aug$e^2)/sum((df$y-mean(df$y))^2)

1 − R2

=R2

40/45

Strengths
There are no parametric assumptions underlying partitioning
methods
Can handle data of unusual shapes and sizes?
Can identify unusual groups of data
Provides a tree based graphic that is fun to interpret
Has an e�cient heuristic of handling missing values.
The method could be in�uenced by outliers, but it would be isolating
the effect to one partition.

41/45

Weaknesses
Doesn't really handle data that is linear very well
Can require tuning parameters to get good model �t
Also means that there is not a nice formula for the model as a result,
or inference about populations available

42/45

Next week: Classi�cation trees
When the response is categorical, the model is called a classi�cation
tree. The criteria for making the splits changes also. There are a
number of split criteria commonly used. If we consider a binary
response ($y=0, 1$), and is the proportion of observations in class

.
Gini:
Entropy:

Which rewards splits where the observations are all one class.

p
1

2p(1 − p)

−p(p) − (1 − p) (1 − p)loge loge

43/45

Your Turn: Lab exercise
Return of the paintings data
Just predict price with year

pp <- read_csv(here::here("slides/data/paris-paintings.csv"))

pp_lm <- lm(logprice ~ Height_in + Width_in, data = pp)
pp_rp <- rpart(logprice ~ Height_in + Width_in + year, data = pp)

pp_lm_aug <- augment(pp_lm)
pp_rp_aug <- augment(pp_rp)
library(rpart.plot)
rpart.plot(pp_rp)

44/45

tidy(pp_rp_all) %>%
 ggplot(aes(x = importance,
 y = reorder(variable, importance))) +
 geom_col()

45/45

