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recap
networks
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Upcoming
Peer evaluation of assignment #2 on Wednesday
Project milestone #3 due this Friday, if you need guidance attend
consultation
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Overview
What is a regression tree?
How is it computed?
Deciding when its a good �t

rmse
Comparison with linear models
Using multiple variables
Next class:

How a classi�cation tree differs from a regression tree?
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Example
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Let's predict Y using a linear model
df_lm <- lm(y ~ x, df)
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Assessing model �t
Look at residuals
Look at mean square error
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Looking at the residuals: this is bad!

It basically looks like the data!
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Looking at the Mean square error (MSE)

In R code:
# calculate example of linear model MSE

MSE(y) =
( −∑i=N

i=1 yi y ̂ i)
2

N
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Let's use a different model: "rpart"
library(rpart)
# df_lm <- lm(y~x, data=df) - similar to lm! But rpart.
df_rp <- rpart(y~x, data=df)
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Look at residuals
ggplot(df_rp_aug,
       aes(x = x,
           y = y)) + 
  geom_point() +
  geom_line(aes(y = .fitted), colour = "salmon", size = 2)
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Look at MSE
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Comparing lm vs rpart
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What the output of a linear model looks like
## 
## Call:
## lm(formula = y ~ x, data = df)
## 
## Coefficients:
## (Intercept)            x  
##      0.8806      -2.2165
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What the output of a rpart looks like
## n= 100 
## 
## node), split, n, deviance, yval
##       * denotes terminal node
## 
##  1) root 100 359.245100  0.8081071  
##    2) x>=0.2775916 24  16.840100 -1.4822830  
##      4) x>=0.3817438 12   3.832238 -2.0814410 *
##      5) x< 0.3817438 12   4.392090 -0.8831252 *
##    3) x< 0.2775916 76 176.745400  1.5313880  
##      6) x< 0.1426085 61  41.562800  0.9365995  
##       12) x>=-0.3999242 50  24.519860  0.7035330  
##         24) x< 0.05905847 41  11.729940  0.4807175  
##           48) x>=-0.1455513 25   5.653876  0.2281914 *
##           49) x< -0.1455513 16   1.990829  0.8752895 *
##         25) x>=0.05905847 9   1.481498  1.7185820 *
##       13) x< -0.3999242 11   1.981477  1.9959930 *
##      7) x>=0.1426085 15  25.842970  3.9501960 *
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Predictions from linear model vs rpart
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So what is going on?
A linear model asks "What line �ts through these points, to minimise
the error"?
A decision tree model asks "How can I best break the data into
segments, to minimize some error?"
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A linear model: draws the line of best �t
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A regression tree: segments the data to reduce some error
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Regression trees
Regression trees recursively partition the data, and use the average
response value of each partition as the model estimate
It is a computationally intense technique that examines all possible
partitions, and choosing the BEST partition by optimizing some
criteria
For regression, with a quantitative response variable, the criteria is
called ANOVA:

where , and  are the equivalent values
for the two subsets created by partitioning.

S − (S + S )ST SL SR

S = ∑( −ST yi ȳ)2 S , SSL SR
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Break down: What is  ?S = ∑( −ST yi ȳ)2
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Break down: What is  ?S = ∑( −ST yi ȳ)2
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 ? Choose a point, compare the left and rightSSL SSR
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 ? Choose a point, compare the left and rightSSL SSR
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 ? Choose a point, compare the left and rightSSL SSR
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 ? Choose a point, compare the left and rightSSL SSR
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 ? Choose a point, compare the left and rightSSL SSR
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Across all values of x?
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And if we repeated this again
This is how the data is split:
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We can represent these splits in a tree format:
library(rpart.plot)
rpart.plot(df_rp)
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Your turn: compute a regression tree
Using the small data set, manually compute a regression tree model
for the data. Sketch the model.
d <- tibble(x=c(1, 2, 3, 4, 5), y=c(10, 12, 5, 4, 3))
d
ggplot(d, aes(x=x, y=y)) + 
  geom_???()

31/45



Understanding rpart
df_rp
## n= 100 
## 
## node), split, n, deviance, yval
##       * denotes terminal node
## 
##  1) root 100 359.245100  0.8081071  
##    2) x>=0.2775916 24  16.840100 -1.4822830  
##      4) x>=0.3817438 12   3.832238 -2.0814410 *
##      5) x< 0.3817438 12   4.392090 -0.8831252 *
##    3) x< 0.2775916 76 176.745400  1.5313880  
##      6) x< 0.1426085 61  41.562800  0.9365995  
##       12) x>=-0.3999242 50  24.519860  0.7035330  
##         24) x< 0.05905847 41  11.729940  0.4807175  
##           48) x>=-0.1455513 25   5.653876  0.2281914 *
##           49) x< -0.1455513 16   1.990829  0.8752895 *
##         25) x>=0.05905847 9   1.481498  1.7185820 *
##       13) x< -0.3999242 11   1.981477  1.9959930 *
##      7) x>=0.1426085 15  25.842970  3.9501960 *
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This is how the model looks:
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Stopping rules
Its an algorithm. Why did it stop at 7 terminal nodes?
Stopping rules are needed, else the algorithm will keep �tting until
every observation is in its own group.
Control parameters set stopping points:

minsplit: minimum number of points in a node that algorithm is
allowed to split
minbucket: minimum number of points in a terminal node

We can also look at the change in value of  at
each split, and if the change is too small, stop.

S − (S + S )ST SL SR
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You can change the options to �t a different model
An re-�t, the model will change. Here we reduce the minbucket
parameter.
df_rp_m10 <- rpart(y~x, data=df, 
                        control = rpart.control(minsplit = 2))
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This yields a (slightly) more complex model.
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What's computed?
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Residuals
ggplot(df_rp_aug, aes(x=x, y= .resid)) + geom_point() +
  ylab("residuals") + scale_x_continuous(breaks=seq(-0.5, 0.5, 0.1))
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Goodness of �t - Root Mean Square Error
gof <- printcp(df_rp, digits=3)
## 
## Regression tree:
## rpart(formula = y ~ x, data = df)
## 
## Variables actually used in tree construction:
## [1] x
## 
## Root node error: 359/100 = 3.59
## 
## n= 100 
## 
##       CP nsplit rel error xerror   xstd
## 1 0.4611      0     1.000  1.008 0.1426
## 2 0.3044      1     0.539  0.580 0.0891
## 3 0.0419      2     0.235  0.301 0.0643
## 4 0.0315      3     0.193  0.248 0.0621
## 5 0.0240      4     0.161  0.246 0.0623
## 6 0.0114      5     0.137  0.218 0.0617
## 7 0.0100      6     0.126  0.216 0.0616 39/45



goodness of �t?
The relative error is . For this example, after 6 splits it is
0.1371214. So  0.8628786.
1-sum(df_rp_aug$e^2)/sum((df$y-mean(df$y))^2)

1 − R2

=R2
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Strengths
There are no parametric assumptions underlying partitioning
methods
Can handle data of unusual shapes and sizes?
Can identify unusual groups of data
Provides a tree based graphic that is fun to interpret
Has an e�cient heuristic of handling missing values.
The method could be in�uenced by outliers, but it would be isolating
the effect to one partition.
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Weaknesses
Doesn't really handle data that is linear very well
Can require tuning parameters to get good model �t
Also means that there is not a nice formula for the model as a result,
or inference about populations available
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Next week: Classi�cation trees
When the response is categorical, the model is called a classi�cation
tree. The criteria for making the splits changes also. There are a
number of split criteria commonly used. If we consider a binary
response ($y=0, 1$), and  is the proportion of observations in class 

.
Gini: 
Entropy: 

Which rewards splits where the observations are all one class.

p
1

2p(1 − p)

−p( p) − (1 − p) (1 − p)loge loge
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Your Turn: Lab exercise
Return of the paintings data
Just predict price with year

pp <- read_csv(here::here("slides/data/paris-paintings.csv"))

pp_lm <- lm(logprice ~ Height_in + Width_in, data = pp)
pp_rp <- rpart(logprice ~ Height_in + Width_in + year, data = pp)

pp_lm_aug <- augment(pp_lm)
pp_rp_aug <- augment(pp_rp)
library(rpart.plot)
rpart.plot(pp_rp)
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tidy(pp_rp_all) %>% 
  ggplot(aes(x = importance,
             y = reorder(variable, importance))) + 
  geom_col()
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